Given f(x)=sin(ax+b),g(x)=cos(ax+b)
⟹f′(x)=a cos(ax+b),g′(x)=−a sin(ax+b)
⟹f′′(x)=−a2sin(ax+b),g′′(x)=−a2cos(ax+b)
⟹f′′′(x)=−a3cos(ax+b),g′′′(x)=a3sin(ax+b)⟹fiv(x)=a4sin(ax+b),giv(x)=a4cos(ax+b)
Hence In general,
fn(x)={(−1)2nansin(ax+b):n is even(−1)2n−1ancos(ax+b):n is odd
and gn(x)={(−1)2nancos(ax+b):n is even(−1)2n+1ansin(ax+b):n is odd
Comments