Given "f (x) = sin(ax + b), g(x) = cos(ax+b)"
"\\implies f'(x) = a \\ cos(ax+b), g'(x) = -a \\ sin(ax+b)"
"\\implies f''(x) = -a^2 sin(ax+b), g''(x)=-a^2cos(ax+b)"
"\\implies f'''(x) = -a^3 cos(ax+b), g'''(x) = a^3 sin(ax+b) \\\\\n\\implies f^{iv}(x) = a^4 sin(ax+b), g^{iv}(x) = a^4 cos(ax+b)"
Hence In general,
"f^n(x) = \\begin{cases} (-1)^{\\frac{n}{2}} a^n sin(ax+b) : n \\ is \\ even \\\\\n(-1)^{\\frac{n-1}{2}} a^n cos(ax+b) : n \\ is \\ odd\n\\end{cases}"
and "g^n(x) = \\begin{cases} (-1)^{\\frac{n}{2}} a^n cos(ax+b) : n \\ is \\ even \\\\\n(-1)^{\\frac{n+1}{2}} a^n sin(ax+b) : n \\ is \\ odd\n\\end{cases}"
Comments
Leave a comment