The logistic growth model formula is given
yekT+Ay=LekT where y is the population at time t(t≥0) and A,k,L are positive constants
Use implicit differentiations to verify that
(a)
dtdy=Lky(L−y)
dtdyekT+kyekT+Adtdy=kLekT
dtdy(ekT+A)=kekT(L−y)
ekT+A=yLekT Then
dtdy=LekTkekT(L−y)y
dtdy=Lky(L−y) (b)
dt2dy2=L2k2y(L−y)(L−2y)
dt2dy2=dtd(Lky(L−y))=Lk(dtdy(L−y)−ydtdy)=
=Lkdtdy(L−2y)=Lk(Lk)y(L−y)(L−2y)=
=L2k2y(L−y)(L−2y)
Comments