The logistic growth model formula is given
where "y" is the population at time "t (t\\geq0)" and "A, k, L" are positive constants
Use implicit differentiations to verify that
(a)
"{dy\\over dt}e^{kT}+kye^{kT}+A{dy\\over dt}=kLe^{kT}"
"e^{kT}+A={Le^{kT}\\over y}"
Then
(b)
"{dy^2 \\over dt^2 }={d \\over dt }({k\\over L}y(L-y))={k\\over L}({dy\\over dt}(L-y)-y{dy\\over dt})="
"={k^2 \\over L^2 }y(L-y)(L-2y)"
Comments
Leave a comment