Question #121788
The logistic growth model formula is given by
〖ye〗^kt+Ay=〖Le〗^kt
Where y I the population at time t(t≥0) and A,K and L are positive constants.
Use implicit differentiations to verify that
dy/dx=k/L y(L-y)

(d^2 y)/〖dt〗^2 =k^2/L^2 y(L-y)(L-2y)
1
Expert's answer
2020-06-14T17:39:56-0400

The logistic growth model formula is given


yekT+Ay=LekTye^{kT}+Ay=Le^{kT}

where yy is the population at time t(t0)t (t\geq0) and A,k,LA, k, L are positive constants

Use implicit differentiations to verify that

(a)


dydt=kLy(Ly){dy\over dt}={k\over L}y(L-y)

dydtekT+kyekT+Adydt=kLekT{dy\over dt}e^{kT}+kye^{kT}+A{dy\over dt}=kLe^{kT}


dydt(ekT+A)=kekT(Ly){dy\over dt}(e^{kT}+A)=ke^{kT}(L-y)

ekT+A=LekTye^{kT}+A={Le^{kT}\over y}

Then


dydt=kekT(Ly)LekTy{dy\over dt}={ke^{kT}(L-y)\over Le^{kT}}y


dydt=kLy(Ly){dy\over dt}={k\over L}y(L-y)

(b)


dy2dt2=k2L2y(Ly)(L2y){dy^2 \over dt^2 }={k^2 \over L^2 }y(L-y)(L-2y)

dy2dt2=ddt(kLy(Ly))=kL(dydt(Ly)ydydt)={dy^2 \over dt^2 }={d \over dt }({k\over L}y(L-y))={k\over L}({dy\over dt}(L-y)-y{dy\over dt})=


=kLdydt(L2y)=kL(kL)y(Ly)(L2y)=={k\over L}{dy\over dt}(L-2y)={k\over L}({k\over L})y(L-y)(L-2y)=

=k2L2y(Ly)(L2y)={k^2 \over L^2 }y(L-y)(L-2y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS