Question #121876
the function f : x ı→ a + b cos x, is defined for 0 ≤ x ≤ 2π. Given that f(0) = 10 and that f(2π/3) = 1 , find (i) the values of a and b, (ii) the range of f, (iii) the exact value of f(5π/6)
1
Expert's answer
2020-06-15T19:00:08-0400

I. f(x)=a+bcosx,0x2π.f(x)=a+b cos x, 0\le x \le 2\pi.

f(0)=10,f(0)=10, hence a+bcos0=10,a+b1=10,a+b=10.a+b cos 0=10, a+b\cdot 1=10, a+b=10.

f(2π3)=1,f(\frac{2\pi}{3})=1, hence a+bcos2π3=1,a+b(12)=1,a+b cos \frac{2\pi}{3}=1, a+b\cdot (-\frac{1}{2})=1, when multiply this equation by 2, we have 2ab=2.2a-b=2.

We have the system of linear equations {a+b=10,2ab=2.\begin{cases} a+b=10, \\ 2a-b=2. \end{cases}

If we add the equations, we have 3a=12,3a=12, hence a=4.a=4.

Then 4+b=10,b=6.4+b=10, b=6.

Answer. a=4,b=6.a=4, b=6.

II. f(x)=4+6cosx.f(x)=4+6 cos x.

The magnitude of the function is 6.

The lower bound of the range for the function is found when cosx=1,cos x=-1, and it's equal to y=4+6(1)=2.y=4+6\cdot (-1)=-2.

The upper bound of the range for the function is found when cosx=1cosx=1, and it's equal to y=4+61=10.y=4+6\cdot 1=10.

Hence the range of the f is 2y10,-2 \le y \le 10, interval notation [2,10].[-2, 10].

Answer. [2,10].[-2, 10].

III. f(5π6)=4+6cos5π6=4+6(32)=433.f(\frac{5\pi}{6})=4+6cos\frac{5\pi}{6}=4+6\cdot (-\frac{\sqrt{3}}{2})=4-3\sqrt{3}.

Answer. 433.4-3\sqrt{3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS