Question #110022
Q.1 ARE THE FUNCTIONS EVEN OR ODD

1- INTEGRAL IS FROM MINUS INFINITY TO PLUS INFINITY
∫e^(-2x)(1-e^(-x))^(2) dx

2-INTEGRALIS FROM MINUS INFINITY TO PLUS INFINITY
∫x(e^(-2x))(1-e^(-x))^(2) dx
1
Expert's answer
2020-04-17T17:57:51-0400

1.

f(x)=e2x(1ex)2dxf(x)=_{-\infty}^{\infty}\int e^{-2x}(1-e^{-x})^2dx

Changing x with -x we get;

f(x)=e2x(1ex)2dxf(-x)=_{-\infty}^{\infty}\int e^{2x}(1-e^{x})^2dx


Now f(x)+f(x)0f(x)+f(-x) \neq 0

And also f(x)f(x)0f(x)-f(-x) \neq 0

Thus, f(x) is neither even nor odd.


2. Let g(x)=xe2x(1ex)2dxg(x)=_{-\infty}^{\infty}\int x e^{-2x}(1-e^{-x})^2dx

Changing x with -x, we get;

g(x)=xe2x(1ex)2dxg(-x)=_{-\infty}^{\infty}\int- x e^{2x}(1-e^{x})^2dx


Now, g(x)+g(x)0g(x)+g(-x) \neq 0

And also g(x)g(x)0g(x)-g(-x) \neq 0

Thus, g(x) is also neither even nor odd.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS