1.
"f(x)=_{-\\infty}^{\\infty}\\int e^{-2x}(1-e^{-x})^2dx"
Changing x with -x we get;
"f(-x)=_{-\\infty}^{\\infty}\\int e^{2x}(1-e^{x})^2dx"
Now "f(x)+f(-x) \\neq 0"
And also "f(x)-f(-x) \\neq 0"
Thus, f(x) is neither even nor odd.
2. Let "g(x)=_{-\\infty}^{\\infty}\\int x e^{-2x}(1-e^{-x})^2dx"
Changing x with -x, we get;
"g(-x)=_{-\\infty}^{\\infty}\\int- x e^{2x}(1-e^{x})^2dx"
Now, "g(x)+g(-x) \\neq 0"
And also "g(x)-g(-x) \\neq 0"
Thus, g(x) is also neither even nor odd.
Comments
Leave a comment