Let "a>0" . The curve "G=\\left\\{ \\left( x,y \\right) \\ :\\ { a }^{ 2 }{ y }^{ 2 }{ =x }^{ 2 }{ (a-x) }^{ } \\right\\}" is the union of the function of the graph "y(x)=\\frac { x }{ a } \\sqrt { a-x }" and "y(x)=-\\frac { x }{ a } \\sqrt { a-x }" defined on the set "(-\\infty ,a]" and symmetric about the "x-" axis. Therefore we draw a curve according to the properties of the function "y(x)=\\frac { x }{ a } \\sqrt { a-x }"
"1)\\quad ay'(x)=\\sqrt { a-x } -\\frac { x }{ 2\\sqrt { a-x } } =\\frac { 2a-3x }{ 2\\sqrt { a-x } } \\ ,x\\ <a\\quad."
If "x<\\frac { 2a }{ 3 }", then "y'(x)>0" and "y(x)\\nearrow \\quad".
If "\\frac { 2a }{ 3 } <x<a" , then "y'(x)<0" and "y(x)\\searrow"
2) "2ay"(x)=\\ \\frac { d }{ dx } \\left( \\frac { 2a-3x }{ \\ \\sqrt { a-x } } \\right)""=\\frac { -3\\sqrt { a-x } +\\ \\frac { (2a-3x) }{ 2\\sqrt { a-x } } \\ \\ \\ }{ (a-x) } =" "\\frac { -6a+\\ 6x+2a-3x }{ 2(a-x)\\sqrt { a-x } \\ } \\ =\\frac { -4a+3x }{ 2(a-x)\\sqrt { a-x } }"
Since "x<a" , then "-4a+3x<-4a+3a<0" and "y"(x)<0" .So function "y(x)" is convex up.
3) The function graph has no vertical asymptotes , since the function is continuous. There no oblique asymptotes since the "\\lim _{ x\\rightarrow -\\infty \\ }{ \\frac { f(x) }{ x } } =\\lim _{ x\\rightarrow -\\infty \\ }{ \\frac { x\\sqrt { a-x } \\quad }{ ax } = } +\\infty"
Comments
Leave a comment