Question #109626
Trace the curve
a2y2=x2(a-x)
1
Expert's answer
2020-04-16T16:24:18-0400

Let a>0a>0 . The curve G={(x,y) : a2y2=x2(ax)}G=\left\{ \left( x,y \right) \ :\ { a }^{ 2 }{ y }^{ 2 }{ =x }^{ 2 }{ (a-x) }^{ } \right\}  is the union of the function of the graph y(x)=xaaxy(x)=\frac { x }{ a } \sqrt { a-x } and y(x)=xaaxy(x)=-\frac { x }{ a } \sqrt { a-x } defined on the set (,a](-\infty ,a] and symmetric about the xx- axis. Therefore we draw a curve according to the properties of the function y(x)=xaaxy(x)=\frac { x }{ a } \sqrt { a-x }

1)ay(x)=axx2ax=2a3x2ax ,x <a.1)\quad ay'(x)=\sqrt { a-x } -\frac { x }{ 2\sqrt { a-x } } =\frac { 2a-3x }{ 2\sqrt { a-x } } \ ,x\ <a\quad.

If x<2a3x<\frac { 2a }{ 3 }, then y(x)>0y'(x)>0 and y(x)y(x)\nearrow \quad.

If 2a3<x<a\frac { 2a }{ 3 } <x<a , then y(x)<0y'(x)<0 and y(x)y(x)\searrow

2) 2ay"(x)= ddx(2a3x ax)2ay"(x)=\ \frac { d }{ dx } \left( \frac { 2a-3x }{ \ \sqrt { a-x } } \right)=3ax+ (2a3x)2ax   (ax)==\frac { -3\sqrt { a-x } +\ \frac { (2a-3x) }{ 2\sqrt { a-x } } \ \ \ }{ (a-x) } = 6a+ 6x+2a3x2(ax)ax  =4a+3x2(ax)ax\frac { -6a+\ 6x+2a-3x }{ 2(a-x)\sqrt { a-x } \ } \ =\frac { -4a+3x }{ 2(a-x)\sqrt { a-x } }

Since x<ax<a , then 4a+3x<4a+3a<0-4a+3x<-4a+3a<0 and y"(x)<0y"(x)<0 .So function y(x)y(x) is convex up.

3) The function graph has no vertical asymptotes , since the function is continuous. There no oblique asymptotes since the limx f(x)x=limx xaxax=+\lim _{ x\rightarrow -\infty \ }{ \frac { f(x) }{ x } } =\lim _{ x\rightarrow -\infty \ }{ \frac { x\sqrt { a-x } \quad }{ ax } = } +\infty

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS