"(a) \\lim_{x\\to 3}f(x) = \\lim_{x\\to 3} (2x^2-3x+15)\\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = \\lim_{x\\to 3} (2(3)^2-3(3)+15)\\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = 24\\\\\n(b) \\lim_{x\\to 24}g(x) = \\lim_{x\\to 24} \\frac{3}{x+3}\\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = \\lim_{x\\to 24}\\frac{3}{24+3} \\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\\frac{1}{9}\\\\\n(c) \\lim_{x\\to 3}g(f(x)) = \\lim_{x\\to 3} \\frac{3}{f(x)+3}\\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = \\lim_{x\\to 3}\\frac{3}{2x^2-3x+18} \\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\\frac{1}{9}\\\\"
Comments
Leave a comment