(a)limx→3f(x)=limx→3(2x2−3x+15) =limx→3(2(3)2−3(3)+15) =24(b)limx→24g(x)=limx→243x+3 =limx→24324+3 =19(c)limx→3g(f(x))=limx→33f(x)+3 =limx→332x2−3x+18 =19(a) \lim_{x\to 3}f(x) = \lim_{x\to 3} (2x^2-3x+15)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 3} (2(3)^2-3(3)+15)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 24\\ (b) \lim_{x\to 24}g(x) = \lim_{x\to 24} \frac{3}{x+3}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 24}\frac{3}{24+3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{9}\\ (c) \lim_{x\to 3}g(f(x)) = \lim_{x\to 3} \frac{3}{f(x)+3}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 3}\frac{3}{2x^2-3x+18} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{9}\\(a)limx→3f(x)=limx→3(2x2−3x+15) =limx→3(2(3)2−3(3)+15) =24(b)limx→24g(x)=limx→24x+33 =limx→2424+33 =91(c)limx→3g(f(x))=limx→3f(x)+33 =limx→32x2−3x+183 =91
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments