Question #109587
Find the limits.
f(x) = 2x2 − 3x + 15, g(x) =
3

x + 3

(a)

lim
x→3
f(x) =


(b)

lim
x→24
g(x) =


(c)

lim
x→3
g(f(x)) =
1
Expert's answer
2020-04-15T10:46:56-0400

(a)limx3f(x)=limx3(2x23x+15)                            =limx3(2(3)23(3)+15)                            =24(b)limx24g(x)=limx243x+3                            =limx24324+3                            =19(c)limx3g(f(x))=limx33f(x)+3                            =limx332x23x+18                            =19(a) \lim_{x\to 3}f(x) = \lim_{x\to 3} (2x^2-3x+15)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 3} (2(3)^2-3(3)+15)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 24\\ (b) \lim_{x\to 24}g(x) = \lim_{x\to 24} \frac{3}{x+3}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 24}\frac{3}{24+3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{9}\\ (c) \lim_{x\to 3}g(f(x)) = \lim_{x\to 3} \frac{3}{f(x)+3}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \lim_{x\to 3}\frac{3}{2x^2-3x+18} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{9}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS