Consider the given region :
"\\begin{aligned}\n & \\text{The given region is} \\\\ \n & \\\\ \n & x\\le y\\le 2x \\\\ \n & \\\\ \n & 0\\le x\\le 2 \\\\ \n & \\\\ \n & \\text{Find the integral as} \\\\ \n & \\\\ \n & \\int\\limits_{0}^{2}{\\int\\limits_{x}^{2x}{\\left( {{x}^{4}}+{{y}^{2}} \\right)dydx}}=\\int\\limits_{0}^{2}{\\left[ {{x}^{4}}y+\\frac{{{y}^{3}}}{3} \\right]_{x}^{2x}dx} \\\\ \n & \\\\ \n & =\\int\\limits_{0}^{2}{\\left( \\left( {{x}^{4}}\\left( 2x \\right)+\\frac{{{\\left( 2x \\right)}^{3}}}{3} \\right)-\\left( {{x}^{4}}\\left( x \\right)+\\frac{{{\\left( x \\right)}^{3}}}{3} \\right) \\right)}dx \\\\ \n & \\\\ \n & =\\int\\limits_{0}^{2}{\\left( \\left( 2{{x}^{5}}+\\frac{8{{x}^{3}}}{3} \\right)-\\left( {{x}^{5}}+\\frac{{{x}^{3}}}{3} \\right) \\right)}dx \\\\ \n & \\\\ \n & =\\int\\limits_{0}^{2}{\\left( {{x}^{5}}+\\frac{7{{x}^{3}}}{3} \\right)}dx \\\\ \n & \\\\ \n & \\text{Apply}\\,\\text{the}\\,\\text{Power}\\,\\text{Rule}:\\quad \\int{{{x}^{a}}}dx=\\frac{{{x}^{a+1}}}{a+1} \\\\ \n & \\\\ \n & =\\left[ \\frac{{{x}^{6}}}{6}+\\frac{7{{x}^{4}}}{12} \\right]_{0}^{2} \\\\ \n & \\\\ \n & =\\frac{{{2}^{6}}}{6}+\\frac{7\\cdot {{2}^{4}}}{12}-0 \\\\ \n & \\\\ \n & =\\text{20} \\\\ \n\\end{aligned}"
Comments
Dear Pintoo, please use the panel for submitting new questions.
Find the range of the function f defined by f(x y)=10-x^2-y^2 for all (x y) for which x^2+y^2
Leave a comment