Let's find "\\frac{dy}{dx}"
"3y^2y'+y^2+2xyy'=1+4yy'"
"y'(3y^2+2xy-4y)=1-y^2"
"y'=\\frac{1-y^2}{y(3y+2x-4)}"
Let's find
"y(2)=y_0:y_0^3+2y_0^2-25=2+2y_0^2"
"y_0^3=27;y_0=3"
"y'(2)=\\frac{1-3^2}{3(3*3+2*2-4)}=-\\frac{8}{27}"
The equation of the tangent line
"y=y'(2)(x-2)+y_0"
Therefore
"y_t=-\\frac{8}{27}(x-2)+3"
Comments
Leave a comment