Let's find dydx\frac{dy}{dx}dxdy
3y2y′+y2+2xyy′=1+4yy′3y^2y'+y^2+2xyy'=1+4yy'3y2y′+y2+2xyy′=1+4yy′
y′(3y2+2xy−4y)=1−y2y'(3y^2+2xy-4y)=1-y^2y′(3y2+2xy−4y)=1−y2
y′=1−y2y(3y+2x−4)y'=\frac{1-y^2}{y(3y+2x-4)}y′=y(3y+2x−4)1−y2
Let's find
y(2)=y0:y03+2y02−25=2+2y02y(2)=y_0:y_0^3+2y_0^2-25=2+2y_0^2y(2)=y0:y03+2y02−25=2+2y02
y03=27;y0=3y_0^3=27;y_0=3y03=27;y0=3
y′(2)=1−323(3∗3+2∗2−4)=−827y'(2)=\frac{1-3^2}{3(3*3+2*2-4)}=-\frac{8}{27}y′(2)=3(3∗3+2∗2−4)1−32=−278
The equation of the tangent line
y=y′(2)(x−2)+y0y=y'(2)(x-2)+y_0y=y′(2)(x−2)+y0
Therefore
yt=−827(x−2)+3y_t=-\frac{8}{27}(x-2)+3yt=−278(x−2)+3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments