Question #109251
Find the equation of the tangent line at the given value of x on the curve.
y^3+xy^2-25=x+2y^2 ; x=2
1
Expert's answer
2020-04-13T19:33:37-0400

Let's find dydx\frac{dy}{dx}

3y2y+y2+2xyy=1+4yy3y^2y'+y^2+2xyy'=1+4yy'

y(3y2+2xy4y)=1y2y'(3y^2+2xy-4y)=1-y^2

y=1y2y(3y+2x4)y'=\frac{1-y^2}{y(3y+2x-4)}

Let's find

y(2)=y0:y03+2y0225=2+2y02y(2)=y_0:y_0^3+2y_0^2-25=2+2y_0^2

y03=27;y0=3y_0^3=27;y_0=3

y(2)=1323(33+224)=827y'(2)=\frac{1-3^2}{3(3*3+2*2-4)}=-\frac{8}{27}

The equation of the tangent line

y=y(2)(x2)+y0y=y'(2)(x-2)+y_0

Therefore

yt=827(x2)+3y_t=-\frac{8}{27}(x-2)+3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS