v 2 = x 2 + y 2 + z 2 v^2=x^2+y^2+z^2 v 2 = x 2 + y 2 + z 2
v v v is symmetrical for x , y , z x,y,z x , y , z . Let's found ∂ v / ∂ x \partial v/\partial x ∂ v / ∂ x :
v = x 2 + y 2 + z 2 v=\sqrt{x^2+y^2+z^2} v = x 2 + y 2 + z 2
∂ v ∂ x = 2 x 2 x 2 + y 2 + z 2 = x v {\frac {\partial v} {\partial x}}={\frac {2x} {2\sqrt{x^2+y^2+z^2}}}={\frac {x} {v}} ∂ x ∂ v = 2 x 2 + y 2 + z 2 2 x = v x
Then ∂ v ∂ y = y v {\frac {\partial v} {\partial y}}={\frac {y} {v}} ∂ y ∂ v = v y and ∂ v ∂ z = z v {\frac {\partial v} {\partial z}}={\frac {z} {v}} ∂ z ∂ v = v z
Let's found second order derivatives
∂ 2 v ∂ x 2 = v − x ∂ v ∂ x v 2 = v − x 2 v v 2 = v 2 − x 2 v 3 {\frac {\partial^2 v} {\partial x^2}}={\frac {v-x{\frac {\partial v} {\partial x}}} {v^2}}={\frac {v-{\frac {x^2} {v}}} {v^2}}={\frac {v^2-x^2} {v^3}} ∂ x 2 ∂ 2 v = v 2 v − x ∂ x ∂ v = v 2 v − v x 2 = v 3 v 2 − x 2
Then ∂ 2 v ∂ y 2 = v 2 − y 2 v 3 {\frac {\partial^2 v} {\partial y^2}}={\frac {v^2-y^2} {v^3}} ∂ y 2 ∂ 2 v = v 3 v 2 − y 2 and ∂ 2 v ∂ z 2 = v 2 − z 2 v 3 {\frac {\partial^2 v} {\partial z^2}}={\frac {v^2-z^2} {v^3}} ∂ z 2 ∂ 2 v = v 3 v 2 − z 2
Let's prove our statement
∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v ∂ z 2 = v 2 − x 2 v 3 + v 2 − y 2 v 3 + v 2 − z 2 v 3 = 3 v 2 − x 2 − y 2 − z 2 v 3 = 2 v 2 v 3 = 2 v {\frac {\partial^2 v} {\partial x^2}}+{\frac {\partial^2 v} {\partial y^2}}+{\frac {\partial^2 v} {\partial z^2}}={\frac {v^2-x^2} {v^3}}+{\frac {v^2-y^2} {v^3}}+{\frac {v^2-z^2} {v^3}}={\frac {3v^2-x^2-y^2-z^2} {v^3}}={\frac {2v^2} {v^3}}={\frac {2} {v}} ∂ x 2 ∂ 2 v + ∂ y 2 ∂ 2 v + ∂ z 2 ∂ 2 v = v 3 v 2 − x 2 + v 3 v 2 − y 2 + v 3 v 2 − z 2 = v 3 3 v 2 − x 2 − y 2 − z 2 = v 3 2 v 2 = v 2
Proved
Comments