v2=x2+y2+z2
v is symmetrical for x,y,z . Let's found ∂v/∂x :
v=x2+y2+z2
∂x∂v=2x2+y2+z22x=vx
Then ∂y∂v=vy and ∂z∂v=vz
Let's found second order derivatives
∂x2∂2v=v2v−x∂x∂v=v2v−vx2=v3v2−x2
Then ∂y2∂2v=v3v2−y2 and ∂z2∂2v=v3v2−z2
Let's prove our statement
∂x2∂2v+∂y2∂2v+∂z2∂2v=v3v2−x2+v3v2−y2+v3v2−z2=v33v2−x2−y2−z2=v32v2=v2
Proved
Comments