"v^2=x^2+y^2+z^2"
"v" is symmetrical for "x,y,z" . Let's found "\\partial v\/\\partial x" :
"v=\\sqrt{x^2+y^2+z^2}"
"{\\frac {\\partial v} {\\partial x}}={\\frac {2x} {2\\sqrt{x^2+y^2+z^2}}}={\\frac {x} {v}}"
Then "{\\frac {\\partial v} {\\partial y}}={\\frac {y} {v}}" and "{\\frac {\\partial v} {\\partial z}}={\\frac {z} {v}}"
Let's found second order derivatives
"{\\frac {\\partial^2 v} {\\partial x^2}}={\\frac {v-x{\\frac {\\partial v} {\\partial x}}} {v^2}}={\\frac {v-{\\frac {x^2} {v}}} {v^2}}={\\frac {v^2-x^2} {v^3}}"
Then "{\\frac {\\partial^2 v} {\\partial y^2}}={\\frac {v^2-y^2} {v^3}}" and "{\\frac {\\partial^2 v} {\\partial z^2}}={\\frac {v^2-z^2} {v^3}}"
Let's prove our statement
"{\\frac {\\partial^2 v} {\\partial x^2}}+{\\frac {\\partial^2 v} {\\partial y^2}}+{\\frac {\\partial^2 v} {\\partial z^2}}={\\frac {v^2-x^2} {v^3}}+{\\frac {v^2-y^2} {v^3}}+{\\frac {v^2-z^2} {v^3}}={\\frac {3v^2-x^2-y^2-z^2} {v^3}}={\\frac {2v^2} {v^3}}={\\frac {2} {v}}"
Proved
Comments
Leave a comment