Question #109174
given that v²=x²+y²+z² prove that d²v/dx² +d²v/dy² +d²v/dz² =2/v
1
Expert's answer
2020-04-13T19:12:53-0400

v2=x2+y2+z2v^2=x^2+y^2+z^2

vv is symmetrical for x,y,zx,y,z . Let's found v/x\partial v/\partial x :

v=x2+y2+z2v=\sqrt{x^2+y^2+z^2}

vx=2x2x2+y2+z2=xv{\frac {\partial v} {\partial x}}={\frac {2x} {2\sqrt{x^2+y^2+z^2}}}={\frac {x} {v}}

Then vy=yv{\frac {\partial v} {\partial y}}={\frac {y} {v}} and vz=zv{\frac {\partial v} {\partial z}}={\frac {z} {v}}

Let's found second order derivatives

2vx2=vxvxv2=vx2vv2=v2x2v3{\frac {\partial^2 v} {\partial x^2}}={\frac {v-x{\frac {\partial v} {\partial x}}} {v^2}}={\frac {v-{\frac {x^2} {v}}} {v^2}}={\frac {v^2-x^2} {v^3}}

Then 2vy2=v2y2v3{\frac {\partial^2 v} {\partial y^2}}={\frac {v^2-y^2} {v^3}} and 2vz2=v2z2v3{\frac {\partial^2 v} {\partial z^2}}={\frac {v^2-z^2} {v^3}}

Let's prove our statement

2vx2+2vy2+2vz2=v2x2v3+v2y2v3+v2z2v3=3v2x2y2z2v3=2v2v3=2v{\frac {\partial^2 v} {\partial x^2}}+{\frac {\partial^2 v} {\partial y^2}}+{\frac {\partial^2 v} {\partial z^2}}={\frac {v^2-x^2} {v^3}}+{\frac {v^2-y^2} {v^3}}+{\frac {v^2-z^2} {v^3}}={\frac {3v^2-x^2-y^2-z^2} {v^3}}={\frac {2v^2} {v^3}}={\frac {2} {v}}

Proved


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS