It is necessary to calculate the integral
"I=\\int\\limits_{d50}^0\\left(\\frac{\\exp\\left({-\\displaystyle\\frac{\\left(\\ln dp-\\ln MMD\\right)^2}{2\\cdot\\ln^2GSD}}\\right)}{\\sqrt{2\\pi}\\cdot dp\\cdot\\ln GSD}\\right)d(dp)"
Note : Your constants are too inconvenient, therefore, to calculate this integral, we introduce simple variables, and at the end we will write the answer through your variables.
"d50=x,\\quad dp=y,\\quad MMD=a,\\quad GSD=b"
Yet we need such a thing as the error function:
"erf(x)=\\frac{2}{\\sqrt{\\pi}}\\cdot\\int\\limits_0^xe^{-t^2}dt\\\\[0.3cm]\n1-erf(x)=\\frac{2}{\\sqrt{\\pi}}\\cdot\\int\\limits_x^{\\infty}e^{-t^2}dt\\\\[0.3cm]\nerf(-x)=-erf(x)" This is not an elementary function that can only be calculated using a computer.
( More information : https://en.wikipedia.org/wiki/Error_function )
In our case,
"I=\\int\\limits_{x}^0\\left(\\frac{\\exp\\left({-\\displaystyle\\frac{\\left(\\ln y-\\ln a\\right)^2}{2\\cdot\\ln^2b}}\\right)}{\\sqrt{2\\pi}\\cdot y\\cdot\\ln b}\\right)d(y)=\\\\[0.3cm]\n\\int\\limits_{x}^0\\left(\\frac{\\exp\\left({-\\left(\\displaystyle\\frac{\\ln y-\\ln a}{\\sqrt{2}\\cdot\\ln b}\\right)^2}\\right)}{\\sqrt{2\\pi}\\cdot y\\cdot\\ln b}\\right)d(y)"
We introduce the change of variable
"t=\\frac{\\ln y-\\ln a}{\\sqrt{2}\\cdot\\ln b}\\longrightarrow\\sqrt{2}\\cdot t\\cdot\\ln b=\\ln\\left(\\frac{y}{a}\\right)\\\\[0.3cm]\ne^{\\sqrt{2}\\cdot t\\cdot\\ln b}=\\frac{y}{a}\\longrightarrow\\boxed{y=a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}}\\\\[0.3cm]\n\\boxed{dy=a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}\\cdot\\sqrt{2}\\cdot\\ln b\\cdot dt}\\\\[0.3cm]\ny=0=a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}\\to\\boxed{t=-\\infty}\\\\[0.3cm]\ny=x=a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}\\to\\boxed{t=B\\equiv\\frac{\\ln x-\\ln a}{\\sqrt{2}\\cdot\\ln b}}"
We substitute all this into the original integral
"I=\\int\\limits_{B}^{-\\infty}\\left(\\frac{e^{-t^2}}{\\sqrt{2\\pi}\\cdot a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}\\cdot\\ln b}\\right)\\cdot\\left(a\\cdot e^{\\sqrt{2}\\cdot t\\cdot\\ln b}\\cdot\\sqrt{2}\\cdot\\ln b\\right)dt=\\\\[0.3cm]\n=\\frac{1}{2}\\cdot\\frac{2}{\\sqrt{\\pi}}\\cdot\\int\\limits_B^{-\\infty}e^{-t^2}dt=[t=-k]=\\\\[0.3cm]=\\frac{1}{2}\\cdot\\frac{2}{\\sqrt{\\pi}}\\cdot\\int\\limits_{-B}^{\\infty}e^{-m^2}(-dm)=-\\frac{1}{2}\\cdot\\underbrace{\\frac{2}{\\sqrt{\\pi}}\\cdot\\int\\limits_{-B}^{\\infty}e^{-m^2}dm}_{1-erf(-B)}\\\\[0.3cm]\n\\boxed{I=-\\frac{erf(B)+1}{2}}"
In the given variables, the answer looks like this
"B=\\frac{\\ln x-\\ln a}{\\sqrt{2}\\cdot\\ln b}=\\frac{\\ln(d50)-\\ln MMD}{\\sqrt{2}\\cdot\\ln GSD}\\\\[0.3cm]\n\\boxed{I=-\\frac{1}{2}\\left(1+erf\\left(\\frac{\\ln(d50)-\\ln MMD}{\\sqrt{2}\\cdot\\ln GSD}\\right)\\right)}"
Check this result using the suggested values.
1) "MMD=19; GSD=1.4; d50=8.25;\\text{Expected result}=0.993"
"I=-\\frac{1}{2}\\left(1+erf\\left(\\frac{\\ln(8.25)-\\ln 19}{\\sqrt{2}\\cdot\\ln 1.4}\\right)\\right)\\approx-0.00658\\\\[0.3cm]\n1+I=1-0.00658=0.99342"
2) "MMD=13; GSD=1.7; d50=4.85; \\text{Expected result} =0.968"
"I=-\\frac{1}{2}\\left(1+erf\\left(\\frac{\\ln(4.85)-\\ln 13}{\\sqrt{2}\\cdot\\ln 1.7}\\right)\\right)\\approx-0.031576\\\\[0.3cm]\n1+I=1-0.031576=0.968424"
Hint : I don’t know what the problem is, but the indicated integral itself does not give a result that is declared as a test, but the value "(1-I)" is very well consistent with the results. Maybe you inaccurately formulated the problem?
Comments
Dear azike, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
I want to thank you so much for finding solution to my mathematical model problem. I want to appreciate you and say a very big thank you to you. God bless.
Leave a comment