Question #108857
Find the area included between the curve x^3 + y^3 = 3axy and its asymptote
1
Expert's answer
2020-04-15T17:33:35-0400

x3+y3=3axyx^3+y^3=3axy

[1+(yx)3]=3ax(yx)[1+(\frac{y}{x})^3]=\frac{3a}{x}(\frac{y}{x})

[1+(yx)3](yx)=3ax\frac{[1+(\frac{y}{x})^3]}{(\frac{y}{x})}=\frac{3a}{x}

As x tends to \infty and -\infty ; RHS tends to 0,so LHS also tend to 0.

So , 1+(yx)31+(\frac{y}{x})^3 tends to 0,thus,yx=1\frac{y}{x}=-1

Hence the asymptote has slope −1 and so is of the form y+x=ky+x=k

Substituting y=kxy=k-x in the equation of curve.

3k2x+3kx2k3=3ax(kx)−3k²x+3kx²−k³ = 3ax(k-x)

3k2/x+3kk3/x2=3a[(k/x)1]−3k²/x+3k−k³/x² = 3a[(k/x)-1 ]

k=ak=-a

This,equation of asymptote is x+y+a=0x+y+a=0

The product of slopes of the line symmetrical to y=xy=x and the equation of asymptote x+y+a=0x+y+a=0 is (-1) i.e. they are at right angle to each other.Whence if the axes of references are turned through an angle of 45° ,the new X axis coincides with the symmetrical line y=xy=x with a changed equation of curve having asymptote parallel to the new Y-axis instead the oblique asymptote x+y+a=0x+y+a=0 .


After transformation new X and Y are:

X=xcos(45°)ysin(45°)=xy2X=xcos(45°)-ysin(45°)=\frac{x-y}{\sqrt{2}}

Y=ysin(45°)+ycos(45°)=x+y2Y=ysin(45°)+ycos(45°)=\frac{x+y}{\sqrt{2}}

x=X+Y2;y=YX2x=\frac{X+Y}{\sqrt{2}};y=\frac{Y-X}{\sqrt{2}}

New equation of curve becomes

(X+Y2)3+(YX2)3=3a(X+Y2)(YX2)(\frac{X+Y}{\sqrt{2}})^3+(\frac{Y-X}{\sqrt{2}})^3=3a(\frac{X+Y}{\sqrt{2}})(\frac{Y-X}{\sqrt{2}})

122((X+Y)3+(YX)3)=(3a2)(Y2X2)\frac{1}{2\sqrt{}2}((X+Y)^3+(Y-X)^3)=(\frac{3a}{2})(Y^2-X^2)

(X3+3XY2)=3a2(Y2X2)(X^3+3XY^2)=\frac{3a}{\sqrt{2}}(Y^2-X^2)

3Y2(X+a2)X2(3a2X)=03Y^2(X+\frac{a}{\sqrt{2}})-X^2(\frac{3a}{\sqrt{2}}-X)=0

3Y2(X+b)X2(3bX)=03Y^2(X+b)-X^2(3b-X)=0 where b=a2b=\frac{a}{\sqrt{2}}

Clearly,the asymptote of the equation parallel to Y-axis is X=-b.

Hence,the area between the curve and its asymptote is given by

A=2b0YdXA=2\int_{-b}^{0}YdX

A=2b0x3(3bxx+b)12dXA=2\int_{-b}^{0}\frac{-x}{\sqrt{3}}(\frac{3b-x}{x+b})^{\frac{1}{2}}dX

A=23b0(x(3bx)(x+b)(3bx))dXA=\frac{-2}{\sqrt{3}}\int_{-b}^{0}(\frac{x(3b-x)}{\sqrt{(x+b)(3b-x)}})dX

Putting X=b(12cosθ);dx=2bsinθdθX=b(1-2cos\theta);dx=2bsin\theta d \theta for X=b,θ=0;X=0,θ=π3X=-b,\theta=0;X=0,\theta=\frac{π}{3}

A=230π3b(12cosθ)(3b(b2bcosθ)).2bsinθ((b2bcosθ)+b)(3b(b2bcosθ))dθA=\frac{-2}{\sqrt{3}}\int_0^{\frac{π}{3}}\frac{b(1-2cos\theta)(3b-(-b-2bcos\theta)).2bsin\theta}{\sqrt{((b-2bcos\theta)+b)(3b-(b-2bcos\theta))}}d\theta

A=230π32b2(1cosθ2cos2θ)dθA=\frac{-2}{\sqrt{3}}\int_0^{\frac{π}{3}}2b^2(1-cos\theta-2cos^2\theta)d\theta

A=4b230π3(cosθ+cos2θ)dθA=\frac{4b^2}{\sqrt{3}}\int_0^{\frac{π}{3}}(cos\theta+cos2\theta)d\theta

A=4b23[(sinθ+sin2θ2)]0π3A=\frac{4b^2}{\sqrt{3}}[(sin\theta+\frac{sin2\theta}{2})]_0^\frac{π}{3}

A=3b2=32a2A=3b^2=\frac{3}{2}a^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS