Question #109193
A right triangular plate of base 2.0 m and height 1.0 m is submerged vertically in water, with top vertex 3.0 m below the surface. Find the force on one side of the plate.
1
Expert's answer
2020-04-13T19:07:39-0400

Given,

Base =2.0 m2.0 \space m

Height = 1.0 m1.0 \space m

We know Density of water = w=9800N/m3w=9800 N/m^3

Force = ??

Here, x = length =

y = depth = 11

So, ordered pair =(0,1)(0,1)

One more ordered pair = (2,4)(2, 4)

Equation of a line is y=mx+cy = mx+ c

Plug (0,1)(0, 1)

1=0+cc=11 = 0 +c \\ c= 1 \\

The equation becomes y=mx+1y=mx+ 1


Plug (2,4)(2, 4) in the above equation


4=2m+12m=3m=324 = 2m + 1 \\ 2m = 3 \\ m = \frac {3}{2}

so the equation is y=32x+1y =\frac {3}{2} x + 1


So, x=2y23x = \frac {2y-2}{3}


Force =wabx y dyw \int_a ^b x \space y \space dy



=9800142y23y dy= 9800 \int_1 ^4 \frac {2y-2}{3} y \space dy



=9800×2314(y2y)dy= \frac {9800 \times 2}{3} \int _1 ^4 ( y^2 - y) dy

=9800×23(y33y22)14= \frac {9800 \times 2}{3} ( \frac {y^3} {3} - \frac {y^2}{2})_1 ^4

=196003(64316213+12)= \frac {19600} {3} (\frac {64}{3} - \frac {16} {2} - \frac {1}{3} + \frac {1}{2} )


=196003(128648626+36)= \frac {19600} {3} (\frac {128}{6} - \frac {48} {6} - \frac {2}{6} + \frac {3}{6} )

=196003(128482+36)=196003(816)= \frac {19600} {3} (\frac {128-48-2+3}{6} ) =\frac {19600} {3} (\frac {81}{6})

Force=88200 NForce = 88200 \space N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS