Since you did not provide a picture with a graph, then I can show the possible options.
In this case,
"\\lim\\limits_{x\\to -2^{-}}f(x)=1\\\\[0.3cm]\n\\lim\\limits_{x\\to -2^{+}}f(x)=4\\\\[0.3cm]\n\\lim\\limits_{x\\to -2^{-}}f(x)\\neq\\lim\\limits_{x\\to -2^{+}}f(x)\\longrightarrow\\nexists\\lim\\limits_{x\\to -2}f(x)\\\\[0.3cm]\n\\boxed{f (x)\\text{ is discontinuous at the point}\\quad x = -2}\\\\[0.3cm]\n\\lim\\limits_{x\\to 2^{-}}f(x)=4\\\\[0.3cm]\n\\lim\\limits_{x\\to 2^{+}}f(x)=4\\\\[0.3cm]\n\\lim\\limits_{x\\to 2^{-}}f(x)=\\lim\\limits_{x\\to 2^{+}}f(x)\\longrightarrow\\lim\\limits_{x\\to 2}f(x)=4\\\\[0.3cm]\n\\boxed{f (x)\\text{ is continuous at the point}\\quad x = 2}"
Another situation
"\\lim\\limits_{x\\to 0^{-}}f(x)=1\\\\[0.3cm]\n\\lim\\limits_{x\\to 0^{+}}f(x)=1\\\\[0.3cm]\n\\lim\\limits_{x\\to 0^{-}}f(x)=\\lim\\limits_{x\\to 0^{+}}f(x)\\longrightarrow\\lim\\limits_{x\\to 0}f(x)=1\\\\[0.3cm]\nf(0)=0\\neq\\lim\\limits_{x\\to 0}f(x)=1\\\\[0.3cm]\n\\boxed{f (x)\\text{ is discontinuous at the point}\\quad x = 0}\\\\[0.3cm]" Another situation
"\\lim\\limits_{x\\to -2^{-}}f(x)=0\\\\[0.3cm]\n\\lim\\limits_{x\\to -2^{+}}f(x)=+\\infty\\\\[0.3cm]\n\\lim\\limits_{x\\to -2^{-}}f(x)\\neq\\lim\\limits_{x\\to -2^{+}}f(x)\\longrightarrow\\nexists\\lim\\limits_{x\\to -2}f(x)\\\\[0.3cm]\n\n\\boxed{f (x)\\text{ is discontinuous at the point}\\quad x = -2}\\\\[0.3cm]"
Comments
Leave a comment