fx′=ex+ysinx+ex+ycosx+18x+2yf_x'=e^{x+y}\sin x+e^{x+y}\cos x+18x+2yfx′=ex+ysinx+ex+ycosx+18x+2y , fxy′′=ex+ysinx+ex+ycosx+2f_{xy}''=e^{x+y}\sin x+e^{x+y}\cos x+2fxy′′=ex+ysinx+ex+ycosx+2
fy′=ex+ysinx+2xf_y'=e^{x+y}\sin x+2xfy′=ex+ysinx+2x , fyx′′=f_{yx}''=fyx′′=ex+ysinx+ex+ycosx+2e^{x+y}\sin x+e^{x+y}\cos x+2ex+ysinx+ex+ycosx+2 then
fxy′′=fyx′′=ex+y(sinx+cosx)+2≈29.8f_{xy}''=f_{yx}''=e^{x+y}(\sin x+\cos x)+2\approx29.8fxy′′=fyx′′=ex+y(sinx+cosx)+2≈29.8 at (x,y)=(1,2)(x,y)=(1,2)(x,y)=(1,2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments