Question #108363

Find first-order partial derivatives of F(x)= cosx²y²z²/Arc sinxy²


1
Expert's answer
2020-04-14T17:37:34-0400

Consider the function f(x,y,z)=cos(x2y2z2)arcsin(xy2)f(x,y,z)=\frac{\cos(x^2y^2z^2)}{\arcsin(xy^2)}


Differentiate the function partially with respect to xx as,



fx(x,y,z)=x(cos(x2y2z2)arcsin(xy2))f_x(x,y,z)=\frac{\partial}{\partial x}(\frac{\cos(x^2y^2z^2)}{\arcsin(xy^2)})


=1arcsin2(xy2)(arcsin(xy2)x(cos(x2y2z2))(cos(x2y2z2))x(arcsin(xy2)))=\frac{1}{\arcsin^2(xy^2)}(\arcsin(xy^2)\frac{\partial}{\partial x}(\cos(x^2y^2z^2))-(\cos(x^2y^2z^2))\frac{\partial}{\partial x}(\arcsin(xy^2)))


=2xy2z2sin(x2y2z2)arcsin(xy2)y2cos(x2y2z2)1x2y4arcsin2(xy2)=\frac{-2xy^2z^2\sin(x^2y^2z^2)\arcsin(xy^2)-\frac{y^2\cos(x^2y^2z^2)}{\sqrt{1-x^2y^4}}}{\arcsin^2(xy^2)}



=2xy2z2sin(x2y2z2)arcsin(xy2)1x2y4y2cos(x2y2z2)arcsin2(xy2)1x2y4=\frac{-2xy^2z^2\sin(x^2y^2z^2)\arcsin(xy^2)\sqrt{1-x^2y^4}-y^2\cos(x^2y^2z^2)}{\arcsin^2(xy^2)\sqrt{1-x^2y^4}}

Differentiate the function partially with respect to yy as,



fy(x,y,z)=y(cos(x2y2z2)arcsin(xy2))f_y(x,y,z)=\frac{\partial}{\partial y}(\frac{\cos(x^2y^2z^2)}{\arcsin(xy^2)})


=1arcsin2(xy2)(arcsin(xy2)y(cos(x2y2z2))(cos(x2y2z2))y(arcsin(xy2)))=\frac{1}{\arcsin^2(xy^2)}(\arcsin(xy^2)\frac{\partial}{\partial y}(\cos(x^2y^2z^2))-(\cos(x^2y^2z^2))\frac{\partial}{\partial y}(\arcsin(xy^2)))


=2x2yz2sin(x2y2z2)arcsin(xy2)2xycos(x2y2z2)1x2y4arcsin2(xy2)=\frac{-2x^2yz^2\sin(x^2y^2z^2)\arcsin(xy^2)-\frac{2xy\cos(x^2y^2z^2)}{\sqrt{1-x^2y^4}}}{\arcsin^2(xy^2)}



=2x2yz2sin(x2y2z2)arcsin(xy2)1x2y42xycos(x2y2z2)arcsin2(xy2)1x2y4=\frac{-2x^2yz^2\sin(x^2y^2z^2)\arcsin(xy^2)\sqrt{1-x^2y^4}-2xy\cos(x^2y^2z^2)}{\arcsin^2(xy^2)\sqrt{1-x^2y^4}}



Differentiate the function with respect to zz as,



fz(x,y,z)=z(cos(x2y2z2)arcsin(xy2))f_z(x,y,z)=\frac{\partial}{\partial z}(\frac{\cos(x^2y^2z^2)}{\arcsin(xy^2)})



=1arcsin(xy2)z(cos(x2y2z2))=\frac{1}{\arcsin(xy^2)}\frac{\partial}{\partial z}(\cos(x^2y^2z^2))



=2x2y2zsin(x2y2z2)arcsin(xy2)=\frac{-2x^2y^2z\sin(x^2y^2z^2)}{\arcsin(xy^2)}

Therefore, the partial derivatives of the multi variable function are:

fx(x,y,z)=2xy2z2sin(x2y2z2)arcsin(xy2)1x2y4y2cos(x2y2z2)arcsin2(xy2)1x2y4f_x(x,y,z)=\frac{-2xy^2z^2\sin(x^2y^2z^2)\arcsin(xy^2)\sqrt{1-x^2y^4}-y^2\cos(x^2y^2z^2)}{\arcsin^2(xy^2)\sqrt{1-x^2y^4}}

fy(x,y,z=2x2yz2sin(x2y2z2)arcsin(xy2)1x2y42xycos(x2y2z2)arcsin2(xy2)1x2y4f_y(x,y,z=\frac{-2x^2yz^2\sin(x^2y^2z^2)\arcsin(xy^2)\sqrt{1-x^2y^4}-2xy\cos(x^2y^2z^2)}{\arcsin^2(xy^2)\sqrt{1-x^2y^4}}


fz(x,y,z)=2x2y2zsin(x2y2z2)arcsin(xy2)f_z(x,y,z)=\frac{-2x^2y^2z\sin(x^2y^2z^2)}{\arcsin(xy^2)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS