Consider the function "f(x,y,z)=\\frac{\\cos(x^2y^2z^2)}{\\arcsin(xy^2)}"
Differentiate the function partially with respect to "x" as,
"f_x(x,y,z)=\\frac{\\partial}{\\partial x}(\\frac{\\cos(x^2y^2z^2)}{\\arcsin(xy^2)})"
"=\\frac{1}{\\arcsin^2(xy^2)}(\\arcsin(xy^2)\\frac{\\partial}{\\partial x}(\\cos(x^2y^2z^2))-(\\cos(x^2y^2z^2))\\frac{\\partial}{\\partial x}(\\arcsin(xy^2)))"
"=\\frac{-2xy^2z^2\\sin(x^2y^2z^2)\\arcsin(xy^2)-\\frac{y^2\\cos(x^2y^2z^2)}{\\sqrt{1-x^2y^4}}}{\\arcsin^2(xy^2)}"
"=\\frac{-2xy^2z^2\\sin(x^2y^2z^2)\\arcsin(xy^2)\\sqrt{1-x^2y^4}-y^2\\cos(x^2y^2z^2)}{\\arcsin^2(xy^2)\\sqrt{1-x^2y^4}}"
Differentiate the function partially with respect to "y" as,
"f_y(x,y,z)=\\frac{\\partial}{\\partial y}(\\frac{\\cos(x^2y^2z^2)}{\\arcsin(xy^2)})"
"=\\frac{1}{\\arcsin^2(xy^2)}(\\arcsin(xy^2)\\frac{\\partial}{\\partial y}(\\cos(x^2y^2z^2))-(\\cos(x^2y^2z^2))\\frac{\\partial}{\\partial y}(\\arcsin(xy^2)))"
"=\\frac{-2x^2yz^2\\sin(x^2y^2z^2)\\arcsin(xy^2)-\\frac{2xy\\cos(x^2y^2z^2)}{\\sqrt{1-x^2y^4}}}{\\arcsin^2(xy^2)}"
"=\\frac{-2x^2yz^2\\sin(x^2y^2z^2)\\arcsin(xy^2)\\sqrt{1-x^2y^4}-2xy\\cos(x^2y^2z^2)}{\\arcsin^2(xy^2)\\sqrt{1-x^2y^4}}"
Differentiate the function with respect to "z" as,
"f_z(x,y,z)=\\frac{\\partial}{\\partial z}(\\frac{\\cos(x^2y^2z^2)}{\\arcsin(xy^2)})"
"=\\frac{1}{\\arcsin(xy^2)}\\frac{\\partial}{\\partial z}(\\cos(x^2y^2z^2))"
"=\\frac{-2x^2y^2z\\sin(x^2y^2z^2)}{\\arcsin(xy^2)}"
"f_x(x,y,z)=\\frac{-2xy^2z^2\\sin(x^2y^2z^2)\\arcsin(xy^2)\\sqrt{1-x^2y^4}-y^2\\cos(x^2y^2z^2)}{\\arcsin^2(xy^2)\\sqrt{1-x^2y^4}}"
"f_y(x,y,z=\\frac{-2x^2yz^2\\sin(x^2y^2z^2)\\arcsin(xy^2)\\sqrt{1-x^2y^4}-2xy\\cos(x^2y^2z^2)}{\\arcsin^2(xy^2)\\sqrt{1-x^2y^4}}"
"f_z(x,y,z)=\\frac{-2x^2y^2z\\sin(x^2y^2z^2)}{\\arcsin(xy^2)}"
Comments
Leave a comment