Consider the function f(x,y,z)=arcsin(xy2)cos(x2y2z2)
Differentiate the function partially with respect to x as,
fx(x,y,z)=∂x∂(arcsin(xy2)cos(x2y2z2))
=arcsin2(xy2)1(arcsin(xy2)∂x∂(cos(x2y2z2))−(cos(x2y2z2))∂x∂(arcsin(xy2)))
=arcsin2(xy2)−2xy2z2sin(x2y2z2)arcsin(xy2)−1−x2y4y2cos(x2y2z2)
=arcsin2(xy2)1−x2y4−2xy2z2sin(x2y2z2)arcsin(xy2)1−x2y4−y2cos(x2y2z2)
Differentiate the function partially with respect to y as,
fy(x,y,z)=∂y∂(arcsin(xy2)cos(x2y2z2))
=arcsin2(xy2)1(arcsin(xy2)∂y∂(cos(x2y2z2))−(cos(x2y2z2))∂y∂(arcsin(xy2)))
=arcsin2(xy2)−2x2yz2sin(x2y2z2)arcsin(xy2)−1−x2y42xycos(x2y2z2)
=arcsin2(xy2)1−x2y4−2x2yz2sin(x2y2z2)arcsin(xy2)1−x2y4−2xycos(x2y2z2)
Differentiate the function with respect to z as,
fz(x,y,z)=∂z∂(arcsin(xy2)cos(x2y2z2))
=arcsin(xy2)1∂z∂(cos(x2y2z2))
=arcsin(xy2)−2x2y2zsin(x2y2z2)
fx(x,y,z)=arcsin2(xy2)1−x2y4−2xy2z2sin(x2y2z2)arcsin(xy2)1−x2y4−y2cos(x2y2z2)
fy(x,y,z=arcsin2(xy2)1−x2y4−2x2yz2sin(x2y2z2)arcsin(xy2)1−x2y4−2xycos(x2y2z2)
fz(x,y,z)=arcsin(xy2)−2x2y2zsin(x2y2z2)
Comments