Question #108356
F(x)= Arc sinx² . Arc cosx² + 1/sinx²
1
Expert's answer
2020-04-20T11:58:01-0400

F(x)=arcsinx2.arccosx2+1sinx2F(x)= arc sinx² . arc cosx² + \frac{1}{sinx²}

F(x)=arcsin(x2).2x1x4+arccos(x2)2x1x42xcos(x2)sin2(x2)F'(x)=arc sin(x^2).\frac{-2x}{\sqrt{}1-x^4}+arc cos(x^2)\frac{2x}{\sqrt{}1-x^4}-\frac{2xcos(x^2)}{sin^2(x^2)}


g(x)=1sin(x2)g(x)=\frac{1}{sin(x^2)}

ddxg(x)=ddu(1sin(u))dudx\frac{d}{dx}g(x)=\frac{d}{du}(\frac{1}{sin(u)})\frac{du}{dx}


ddxg(x)=cosec(x2)cot(x2)2x=2xcos(x2)sin2(x2)\frac{d}{dx}g(x)=-cosec(x^2)cot(x^2)2x=\frac{-2xcos(x^2)}{sin^2(x^2)}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS