F(x)=arcsinx2.arccosx2+1sinx2F(x)= arc sinx² . arc cosx² + \frac{1}{sinx²}F(x)=arcsinx2.arccosx2+sinx21
F′(x)=arcsin(x2).−2x1−x4+arccos(x2)2x1−x4−2xcos(x2)sin2(x2)F'(x)=arc sin(x^2).\frac{-2x}{\sqrt{}1-x^4}+arc cos(x^2)\frac{2x}{\sqrt{}1-x^4}-\frac{2xcos(x^2)}{sin^2(x^2)}F′(x)=arcsin(x2).1−x4−2x+arccos(x2)1−x42x−sin2(x2)2xcos(x2)
g(x)=1sin(x2)g(x)=\frac{1}{sin(x^2)}g(x)=sin(x2)1
ddxg(x)=ddu(1sin(u))dudx\frac{d}{dx}g(x)=\frac{d}{du}(\frac{1}{sin(u)})\frac{du}{dx}dxdg(x)=dud(sin(u)1)dxdu
ddxg(x)=−cosec(x2)cot(x2)2x=−2xcos(x2)sin2(x2)\frac{d}{dx}g(x)=-cosec(x^2)cot(x^2)2x=\frac{-2xcos(x^2)}{sin^2(x^2)}dxdg(x)=−cosec(x2)cot(x2)2x=sin2(x2)−2xcos(x2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments