F(x)=Arccot(x2)+x2Arcsin(x2)F(x)=Arccot(x^2)+x^2Arcsin(x^2)F(x)=Arccot(x2)+x2Arcsin(x2)
dFdx=−11+(x2)2ddx(x2)+2xArcsin(x2)+x21−(x2)2ddx(x2)=\frac{dF}{dx}=-\frac{1}{1+(x^2)^2}\frac{d}{dx}(x^2)+2xArcsin(x^2)+\frac{x^2}{\sqrt{1-(x^2)^2}}\frac{d}{dx}(x^2)=dxdF=−1+(x2)21dxd(x2)+2xArcsin(x2)+1−(x2)2x2dxd(x2)=
=−2x1+(x2)2+2xArcsin(x2)+2x31−(x2)2=-\frac{2x}{1+(x^2)^2}+2xArcsin(x^2)+\frac{2x^3}{\sqrt{1-(x^2)^2}}=−1+(x2)22x+2xArcsin(x2)+1−(x2)22x3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments