Question #108252
find fx(0,0) and fx (x,y), where (x,y)≠(0,0) for the following function f(x,y)= {xy^3/x^2+y^2, (x,y) ≠(0,0) 0, (x,y)=(0,0) is fx continuous at (0,0)?
1
Expert's answer
2020-04-07T13:02:24-0400

The given equation is

f(x,y)={(xy3)x2+y2,if (x,y)(0,0)0,if (x,y)=(0,0)f(x,y)=\begin {cases} \frac{(xy^3)}{x^2} +y^2 , & \text{if} \ (x,y)\neq(0,0) \\ 0 ,& \text{if} \ (x,y)=(0,0) \end{cases}

Then

fx(0,0)=limh0f(0+h,0)f(0,0)hf_x(0,0)=\lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h}=limh0(00)h=\lim_{h\to0} \frac{(0-0)}{h}=0=0




Now,  fx(x,y)=limh0f(x+h,y)f(x,y)h\text{Now},\ \ f_x(x,y)=\lim_{h\to0} \frac{f(x+h,y)-f(x,y)}{h}=limh0(y3x+h+y2)(y3x+y2)h=\lim_{h\to0} \frac{(\frac{y^3}{x+h}+y^2)-(\frac{y^3}{x}+y^2)}{h}




=limh0xy3xy3hy3h(x+h)(x)=\lim_{h\to0} \frac{x y^3-xy^3-hy^3}{h(x+h)(x)}=limh0hy3h(x+h)(x)=\lim_{h\to0} \frac{-hy^3}{h(x+h)(x)}




=y3x2  when  (x,y)(0,0)=\frac{-y^3}{x^2} \ \ \text{when} \ \ (x,y)\neq(0,0)



Consider the sequence  (xn)=(1n2,1n)R2\text{Consider the sequence } \ (x_n)=(\frac{1}{n^2},\frac{1}{n}) \in \R^2 .

Then

(xn)(0,0)=xn=(1n4+1n2)||(x_n)-(0,0)||=||x_n||=\sqrt{(\frac{1}{n^4}+\frac{1}{n^2})}


=n2+1n4=1+n2n21+2n+n2n2=\sqrt{ \frac{n^2+1}{n^4}}=\frac{ \sqrt{1+n^2}}{n^2}\leq\frac{ \sqrt{1+2n+n^2}}{n^2}


=1+nn21n2+1n1n+1n=\frac{1+n}{n^2}\leq\frac{1}{n^2}+\frac{1}{n}\leq \frac{1}{n}+\frac{1}{n}=2nϵ ,whenever nK=\frac{2}{n}\leq\epsilon \ , \text{whenever} \ n\geq K

Where, K>2ϵ\text{Where}, \ K>\frac{2}{\epsilon}


 (xn)(0,0)\therefore \ (x_n)\rightarrow(0,0) but

fx(xn)fx(0,0)=n4n30=n as n|f_x(x_n)-f_x(0,0)|=|-\frac{n^4}{n^3}-0|=n\rightarrow\infin \ as \ n\rightarrow\infinHence, fx(xn)fx(0,0)\text{Hence}, \ f_x(x_n)\nrightarrow f_x(0,0)

Therefore ,fx\text{Therefore} \ , f_x is not continuous at (0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.04.21, 18:32

A solution is correct.

Vikram
07.04.21, 18:26

Is this answer correct?

LATEST TUTORIALS
APPROVED BY CLIENTS