The given equation is
"f(x,y)=\\begin {cases}\n\\frac{(xy^3)}{x^2} +y^2 , & \\text{if} \\ (x,y)\\neq(0,0) \\\\\n0 ,& \\text{if} \\ (x,y)=(0,0)\n\\end{cases}"
Then
"f_x(0,0)=\\lim_{h\\to 0} \\frac{f(0+h,0)-f(0,0)}{h}""=\\lim_{h\\to0} \\frac{(0-0)}{h}""=0""\\text{Consider the sequence } \\ (x_n)=(\\frac{1}{n^2},\\frac{1}{n}) \\in \\R^2" .
Then
"||(x_n)-(0,0)||=||x_n||=\\sqrt{(\\frac{1}{n^4}+\\frac{1}{n^2})}""=\\sqrt{ \\frac{n^2+1}{n^4}}=\\frac{ \\sqrt{1+n^2}}{n^2}\\leq\\frac{ \\sqrt{1+2n+n^2}}{n^2}"
"\\text{Where}, \\ K>\\frac{2}{\\epsilon}"
"\\therefore \\ (x_n)\\rightarrow(0,0)" but
"|f_x(x_n)-f_x(0,0)|=|-\\frac{n^4}{n^3}-0|=n\\rightarrow\\infin \\ as \\ n\\rightarrow\\infin""\\text{Hence}, \\ f_x(x_n)\\nrightarrow f_x(0,0)"
"\\text{Therefore} \\ , f_x" is not continuous at (0,0).
Comments
A solution is correct.
Is this answer correct?
Leave a comment