The given equation is
f ( x , y ) = { ( x y 3 ) x 2 + y 2 , if ( x , y ) ≠ ( 0 , 0 ) 0 , if ( x , y ) = ( 0 , 0 ) f(x,y)=\begin {cases}
\frac{(xy^3)}{x^2} +y^2 , & \text{if} \ (x,y)\neq(0,0) \\
0 ,& \text{if} \ (x,y)=(0,0)
\end{cases} f ( x , y ) = { x 2 ( x y 3 ) + y 2 , 0 , if ( x , y ) = ( 0 , 0 ) if ( x , y ) = ( 0 , 0 )
Then
f x ( 0 , 0 ) = lim h → 0 f ( 0 + h , 0 ) − f ( 0 , 0 ) h f_x(0,0)=\lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h} f x ( 0 , 0 ) = h → 0 lim h f ( 0 + h , 0 ) − f ( 0 , 0 ) = lim h → 0 ( 0 − 0 ) h =\lim_{h\to0} \frac{(0-0)}{h} = h → 0 lim h ( 0 − 0 ) = 0 =0 = 0
Now , f x ( x , y ) = lim h → 0 f ( x + h , y ) − f ( x , y ) h \text{Now},\ \ f_x(x,y)=\lim_{h\to0} \frac{f(x+h,y)-f(x,y)}{h} Now , f x ( x , y ) = h → 0 lim h f ( x + h , y ) − f ( x , y ) = lim h → 0 ( y 3 x + h + y 2 ) − ( y 3 x + y 2 ) h =\lim_{h\to0} \frac{(\frac{y^3}{x+h}+y^2)-(\frac{y^3}{x}+y^2)}{h} = h → 0 lim h ( x + h y 3 + y 2 ) − ( x y 3 + y 2 )
= lim h → 0 x y 3 − x y 3 − h y 3 h ( x + h ) ( x ) =\lim_{h\to0} \frac{x y^3-xy^3-hy^3}{h(x+h)(x)} = h → 0 lim h ( x + h ) ( x ) x y 3 − x y 3 − h y 3 = lim h → 0 − h y 3 h ( x + h ) ( x ) =\lim_{h\to0} \frac{-hy^3}{h(x+h)(x)} = h → 0 lim h ( x + h ) ( x ) − h y 3
= − y 3 x 2 when ( x , y ) ≠ ( 0 , 0 ) =\frac{-y^3}{x^2} \ \ \text{when} \ \ (x,y)\neq(0,0) = x 2 − y 3 when ( x , y ) = ( 0 , 0 )
Consider the sequence ( x n ) = ( 1 n 2 , 1 n ) ∈ R 2 \text{Consider the sequence } \ (x_n)=(\frac{1}{n^2},\frac{1}{n}) \in \R^2 Consider the sequence ( x n ) = ( n 2 1 , n 1 ) ∈ R 2 .
Then
∣ ∣ ( x n ) − ( 0 , 0 ) ∣ ∣ = ∣ ∣ x n ∣ ∣ = ( 1 n 4 + 1 n 2 ) ||(x_n)-(0,0)||=||x_n||=\sqrt{(\frac{1}{n^4}+\frac{1}{n^2})} ∣∣ ( x n ) − ( 0 , 0 ) ∣∣ = ∣∣ x n ∣∣ = ( n 4 1 + n 2 1 )
= n 2 + 1 n 4 = 1 + n 2 n 2 ≤ 1 + 2 n + n 2 n 2 =\sqrt{ \frac{n^2+1}{n^4}}=\frac{ \sqrt{1+n^2}}{n^2}\leq\frac{ \sqrt{1+2n+n^2}}{n^2} = n 4 n 2 + 1 = n 2 1 + n 2 ≤ n 2 1 + 2 n + n 2
= 1 + n n 2 ≤ 1 n 2 + 1 n ≤ 1 n + 1 n =\frac{1+n}{n^2}\leq\frac{1}{n^2}+\frac{1}{n}\leq \frac{1}{n}+\frac{1}{n} = n 2 1 + n ≤ n 2 1 + n 1 ≤ n 1 + n 1 = 2 n ≤ ϵ , whenever n ≥ K =\frac{2}{n}\leq\epsilon \ , \text{whenever} \ n\geq K = n 2 ≤ ϵ , whenever n ≥ K Where , K > 2 ϵ \text{Where}, \ K>\frac{2}{\epsilon} Where , K > ϵ 2
∴ ( x n ) → ( 0 , 0 ) \therefore \ (x_n)\rightarrow(0,0) ∴ ( x n ) → ( 0 , 0 ) but
∣ f x ( x n ) − f x ( 0 , 0 ) ∣ = ∣ − n 4 n 3 − 0 ∣ = n → ∞ a s n → ∞ |f_x(x_n)-f_x(0,0)|=|-\frac{n^4}{n^3}-0|=n\rightarrow\infin \ as \ n\rightarrow\infin ∣ f x ( x n ) − f x ( 0 , 0 ) ∣ = ∣ − n 3 n 4 − 0∣ = n → ∞ a s n → ∞ Hence , f x ( x n ) ↛ f x ( 0 , 0 ) \text{Hence}, \ f_x(x_n)\nrightarrow f_x(0,0) Hence , f x ( x n ) ↛ f x ( 0 , 0 )
Therefore , f x \text{Therefore} \ , f_x Therefore , f x is not continuous at (0,0).
Comments
A solution is correct.
Is this answer correct?