The given equation is
f(x,y)={x2(xy3)+y2,0,if (x,y)=(0,0)if (x,y)=(0,0)
Then
fx(0,0)=h→0limhf(0+h,0)−f(0,0)=h→0limh(0−0)=0
Now, fx(x,y)=h→0limhf(x+h,y)−f(x,y)=h→0limh(x+hy3+y2)−(xy3+y2)
=h→0limh(x+h)(x)xy3−xy3−hy3=h→0limh(x+h)(x)−hy3
=x2−y3 when (x,y)=(0,0)
Consider the sequence (xn)=(n21,n1)∈R2 .
Then
∣∣(xn)−(0,0)∣∣=∣∣xn∣∣=(n41+n21)
=n4n2+1=n21+n2≤n21+2n+n2
=n21+n≤n21+n1≤n1+n1=n2≤ϵ ,whenever n≥KWhere, K>ϵ2
∴ (xn)→(0,0) but
∣fx(xn)−fx(0,0)∣=∣−n3n4−0∣=n→∞ as n→∞Hence, fx(xn)↛fx(0,0)
Therefore ,fx is not continuous at (0,0).
Comments
A solution is correct.
Is this answer correct?