Answer to Question #108192 in Calculus for Garima Ahlawat

Question #108192
Let f(x,y) = {xy/(x^2 +y^2) , (x,y) not equal to (0,0) , 0 , (x,y) =(0,0)}
(I) show that f(x,y) and f(x,0) are each continuous functions of one variable.
(ii) is f continuous at (0,0)? Give reason for your answer.
(iii) is f differentiable at (0,0)? Give reason.
1
Expert's answer
2020-04-14T15:08:39-0400

(i) Let x=x0=const0x=x_0=const\not=0


f(x0,y)=x0yx02+y2,y0,f(x0,0)=0f(x_0,y)={x_0y \over x_0^2+y^2}, y\not=0, f(x_0,0)=0lim(x0,y)(x0,0)f(x0,0)=limy0x0yx02+y2=0=f(x0,0)\lim\limits_{(x_0,y)\to(x_0,0)}f(x_0,0)=\lim\limits_{y\to0}{x_0y \over x_0^2+y^2}=0=f(x_0,0)f(0,y)=0(y)02+y2=0,y0,f(0,0)=0f(0,y)={0(y) \over 0^2+y^2}=0, y\not=0, f(0,0)=0lim(0,y)(0,0)f(x,0)=limy0[0]=0=f(0,0)\lim\limits_{(0,y)\to(0,0)}f(x,0)=\lim\limits_{y\to0}\big[0\big]=0=f(0,0)

The function f(x0,y)f(x_0,y) is continuous at y=0.y=0.


Let y=y0=const0y=y_0=const\not=0


f(x,y0)=xy0x2+y02,x0,f(0,y0)=0f(x,y_0)={xy _0\over x^2+y_0^2}, x\not=0, f(0,y_0)=0


lim(x,y0)(0,y0)f(x,y0)=limx0xy0x2+y02=0=f(0,y0)\lim\limits_{(x,y_0)\to(0,y_0)}f(x,y_0)=\lim\limits_{x\to0}{xy_0 \over x^2+y_0^2}=0=f(0,y_0)


f(x,0)=x(0)x2+02=0,x0,f(0,0)=0f(x,0)={x(0) \over x^2+0^2}=0, x\not=0, f(0,0)=0

lim(x,0)(0,0)f(x,0)=limx0[0]=0=f(0,0)\lim\limits_{(x,0)\to(0,0)}f(x,0)=\lim\limits_{x\to0}\big[0\big]=0=f(0,0)

The function f(x,0)f(x,0) is continuous at x=0.x=0.

The function f(x,y0)f(x, y_0) is continuous at x=0.x=0.


(ii) Let x=yx=y


lim(x,y)(0,0)f(x,y)=limx0[x2 x2+x2]=120=f(0,0)\lim\limits_{(x,y)\to(0,0)}f(x,y)=\lim\limits_{x\to0}\big[{x^2\ \over x^2+x^2}\big]={1 \over 2}\not=0=f(0,0)

The function ff is not continuous at (0,0)

(iii)


fx(x,y)=yx2+y22x2(x2+y2)2=yy2x2(x2+y2)2, (x,y)(0,0)f_x(x,y)=y\cdot{x^2+y^2-2x^2 \over (x^2+y^2)^2}=y{y^2-x^2 \over (x^2+y^2)^2},\ (x,y)\not=(0,0)

fy(x,y)=xx2+y22y2(x2+y2)2=xx2y2(x2+y2)2, (x,y)(0,0)f_y(x,y)=x\cdot{x^2+y^2-2y^2\over (x^2+y^2)^2}=x{x^2-y^2\over (x^2+y^2)^2},\ (x,y)\not=(0,0)

The partial derivatives are defined at (0, 0).


fx(0,0)=limh01h(f(0+h,0)f(0,0))=limh0(00)=0f_x(0,0)=\lim\limits_{h\to0}{1\over h}(f(0+h,0)-f(0,0))=\lim\limits_{h\to0}(0-0)=0

fy(0,0)=limh01h(f(0,0+h)f(0,0))=limh0(00)=0f_y(0,0)=\lim\limits_{h\to0}{1\over h}(f(0,0+h)-f(0,0))=\lim\limits_{h\to0}(0-0)=0

Therefore


fx(0,0)=fy(0,0)=0f_x(0,0)=f_y(0,0)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment