(i) Let x=x0=const=0
f(x0,y)=x02+y2x0y,y=0,f(x0,0)=0(x0,y)→(x0,0)limf(x0,0)=y→0limx02+y2x0y=0=f(x0,0)f(0,y)=02+y20(y)=0,y=0,f(0,0)=0(0,y)→(0,0)limf(x,0)=y→0lim[0]=0=f(0,0)The function f(x0,y) is continuous at y=0.
Let y=y0=const=0
f(x,y0)=x2+y02xy0,x=0,f(0,y0)=0
(x,y0)→(0,y0)limf(x,y0)=x→0limx2+y02xy0=0=f(0,y0)
f(x,0)=x2+02x(0)=0,x=0,f(0,0)=0
(x,0)→(0,0)limf(x,0)=x→0lim[0]=0=f(0,0) The function f(x,0) is continuous at x=0.
The function f(x,y0) is continuous at x=0.
(ii) Let x=y
(x,y)→(0,0)limf(x,y)=x→0lim[x2+x2x2 ]=21=0=f(0,0) The function f is not continuous at (0,0)
(iii)
fx(x,y)=y⋅(x2+y2)2x2+y2−2x2=y(x2+y2)2y2−x2, (x,y)=(0,0)
fy(x,y)=x⋅(x2+y2)2x2+y2−2y2=x(x2+y2)2x2−y2, (x,y)=(0,0) The partial derivatives are defined at (0, 0).
fx(0,0)=h→0limh1(f(0+h,0)−f(0,0))=h→0lim(0−0)=0
fy(0,0)=h→0limh1(f(0,0+h)−f(0,0))=h→0lim(0−0)=0 Therefore
fx(0,0)=fy(0,0)=0
Comments
Leave a comment