(i) Let "x=x_0=const\\not=0"
"f(x_0,y)={x_0y \\over x_0^2+y^2}, y\\not=0, f(x_0,0)=0""\\lim\\limits_{(x_0,y)\\to(x_0,0)}f(x_0,0)=\\lim\\limits_{y\\to0}{x_0y \\over x_0^2+y^2}=0=f(x_0,0)""f(0,y)={0(y) \\over 0^2+y^2}=0, y\\not=0, f(0,0)=0""\\lim\\limits_{(0,y)\\to(0,0)}f(x,0)=\\lim\\limits_{y\\to0}\\big[0\\big]=0=f(0,0)"The function "f(x_0,y)" is continuous at "y=0."
Let "y=y_0=const\\not=0"
"f(x,y_0)={xy _0\\over x^2+y_0^2}, x\\not=0, f(0,y_0)=0"
"\\lim\\limits_{(x,y_0)\\to(0,y_0)}f(x,y_0)=\\lim\\limits_{x\\to0}{xy_0 \\over x^2+y_0^2}=0=f(0,y_0)"
"f(x,0)={x(0) \\over x^2+0^2}=0, x\\not=0, f(0,0)=0"
"\\lim\\limits_{(x,0)\\to(0,0)}f(x,0)=\\lim\\limits_{x\\to0}\\big[0\\big]=0=f(0,0)" The function "f(x,0)" is continuous at "x=0."
The function "f(x, y_0)" is continuous at "x=0."
(ii) Let "x=y"
"\\lim\\limits_{(x,y)\\to(0,0)}f(x,y)=\\lim\\limits_{x\\to0}\\big[{x^2\\ \\over x^2+x^2}\\big]={1 \\over 2}\\not=0=f(0,0)" The function "f" is not continuous at (0,0)
(iii)
"f_x(x,y)=y\\cdot{x^2+y^2-2x^2 \\over (x^2+y^2)^2}=y{y^2-x^2 \\over (x^2+y^2)^2},\\ (x,y)\\not=(0,0)"
"f_y(x,y)=x\\cdot{x^2+y^2-2y^2\\over (x^2+y^2)^2}=x{x^2-y^2\\over (x^2+y^2)^2},\\ (x,y)\\not=(0,0)" The partial derivatives are defined at (0, 0).
"f_x(0,0)=\\lim\\limits_{h\\to0}{1\\over h}(f(0+h,0)-f(0,0))=\\lim\\limits_{h\\to0}(0-0)=0"
"f_y(0,0)=\\lim\\limits_{h\\to0}{1\\over h}(f(0,0+h)-f(0,0))=\\lim\\limits_{h\\to0}(0-0)=0" Therefore
"f_x(0,0)=f_y(0,0)=0"
Comments
Leave a comment