Answer to Question #108189 in Calculus for Garima Ahlawat

Question #108189
(1) find the minimum value of the function f(x,y) = x^2 + 2y^2 on the circle x^2 + y^2 =1
(2) let the function f be defined by f(x,y) = 3x^2 y^4 / (x^4 + y^8) (x,y) not equal to (0,0) and 0 , (x,y) = (0,0). Show that f has directional derivatives in all directions at (0,0)
1
Expert's answer
2020-05-21T12:45:45-0400

(1). Make the L=(x,y,l)=x2+2y2+l(x2+y21)L=(x,y,l)=x^2+2y^2+l(x^2+y^2-1) where ll is Lagrange maltiplier.

Lx=2x+2lx,Ly=4y+2ly.L'_x=2x+2lx,L'_y=4y+2ly. Solving system Lx=Ly=0L'_x=L'_y=0 and x2+y2=1x^2+y^2=1 then

l=1,y=0,x=1,x=1l=-1,y=0,x=1,x=-1

Lx2=2+2l,Lxy=0,Ly2=4+2lL''_{x^2}=2+2l,L''_{xy}=0,L''_{y^2}=4+2l then d2L=(2+2l)dx2+(4+2l)dy2d^2L=(2+2l)dx^2+(4+2l)dy^2 .If l=1l=-1

then d2L>0d^2L>0 hence (1,0),(1,0)(1,0),(-1,0) is points of minimum f(1,0)=f(1,0)=1f(1,0)=f(-1,0)=1

(2). limx,y03x2y4x4+y8=limx03kk2+1=3kk2+1\lim_{x,y\to0} \frac{3x^2y^4}{x^4+y^8}=\lim_{x\to0}\frac{3k}{k^2+1}=\frac{3k}{k^2+1} where k=x2y4.k=\frac{x^2}{y^4}. The limit of the f(x,y)f(x,y) depends

on the value of kk . Hence ff has directional derivatives

in all directions at (0,0).(0,0).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment