(1). Make the L=(x,y,l)=x2+2y2+l(x2+y2−1) where l is Lagrange maltiplier.
Lx′=2x+2lx,Ly′=4y+2ly. Solving system Lx′=Ly′=0 and x2+y2=1 then
l=−1,y=0,x=1,x=−1
Lx2′′=2+2l,Lxy′′=0,Ly2′′=4+2l then d2L=(2+2l)dx2+(4+2l)dy2 .If l=−1
then d2L>0 hence (1,0),(−1,0) is points of minimum f(1,0)=f(−1,0)=1
(2). limx,y→0x4+y83x2y4=limx→0k2+13k=k2+13k where k=y4x2. The limit of the f(x,y) depends
on the value of k . Hence f has directional derivatives
in all directions at (0,0).
Comments
Leave a comment