(1). Make the "L=(x,y,l)=x^2+2y^2+l(x^2+y^2-1)" where "l" is Lagrange maltiplier.
"L'_x=2x+2lx,L'_y=4y+2ly." Solving system "L'_x=L'_y=0" and "x^2+y^2=1" then
"l=-1,y=0,x=1,x=-1"
"L''_{x^2}=2+2l,L''_{xy}=0,L''_{y^2}=4+2l" then "d^2L=(2+2l)dx^2+(4+2l)dy^2" .If "l=-1"
then "d^2L>0" hence "(1,0),(-1,0)" is points of minimum "f(1,0)=f(-1,0)=1"
(2). "\\lim_{x,y\\to0} \\frac{3x^2y^4}{x^4+y^8}=\\lim_{x\\to0}\\frac{3k}{k^2+1}=\\frac{3k}{k^2+1}" where "k=\\frac{x^2}{y^4}." The limit of the "f(x,y)" depends
on the value of "k" . Hence "f" has directional derivatives
in all directions at "(0,0)."
Comments
Leave a comment