∫ (secx)dx + ∫ (cosxy) dx
∫(secx)dx+∫(cosxy)dx=\int(secx)dx+\int(cosxy)dx=∫(secx)dx+∫(cosxy)dx=
=∫(secx)∗(secx+tanx)/(secx+tanx)dx+1/y∫(cosxy)dxy==\int(secx)*(secx+tanx)/(secx+tanx)dx+1/y\int(cosxy)dxy==∫(secx)∗(secx+tanx)/(secx+tanx)dx+1/y∫(cosxy)dxy=
=∫1/(secx+tanx)d(secx+tanx)+(sin(xy))/y==\int1/(secx+tanx)d(secx+tanx)+(sin(xy))/y==∫1/(secx+tanx)d(secx+tanx)+(sin(xy))/y=
=ln(secx+tanx)+(sin(xy))/y+C=ln(sec x + tan x)+(sin(xy))/y+C=ln(secx+tanx)+(sin(xy))/y+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments