Question #108094

∫ (secx)dx + ∫ (cosxy) dx


1
Expert's answer
2020-04-13T12:53:38-0400

(secx)dx+(cosxy)dx=\int(secx)dx+\int(cosxy)dx=

=(secx)(secx+tanx)/(secx+tanx)dx+1/y(cosxy)dxy==\int(secx)*(secx+tanx)/(secx+tanx)dx+1/y\int(cosxy)dxy=

=1/(secx+tanx)d(secx+tanx)+(sin(xy))/y==\int1/(secx+tanx)d(secx+tanx)+(sin(xy))/y=

=ln(secx+tanx)+(sin(xy))/y+C=ln(sec x + tan x)+(sin(xy))/y+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS