∫ x*sinx dx
We use integration by parts method.
Let u = x, which implies du/dx = 1
and let dv/dx = sin(x). Integrating this to get v gives v = –cos(x).
"\u222b x sin(x) dx = \u222b u(dv\/dx) dx = uv \u2013 \u222b v(du\/dx) dx = \u2013x cos(x) \u2013 \u222b \u2013cos(x)*1 dx = \u2013x cos(x) \u2013 \u222b \u2013cos(x) dx = \u2013x cos(x) + \u222b cos(x) dx = \u2013x cos(x) + sin(x) + c."
Comments
Leave a comment