∫ (secxy + siny²) dx
"\\int \\sec(xy)dx+\\int \\sin{y^2}dx={\\frac 1 y}\\log(\\sec(xy)+\\tan(xy))+x\\sin{y^2}+C"
reference for secant integral formula: https://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-4-techniques-of-integration/part-a-trigonometric-powers-trigonometric-substitution-and-completing-the-square/session-71-integrals-involving-secant-cosecant-and-cotangent/MIT18_01SCF10_Ses71c.pdf
Comments
Dear Nimra, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you so much☺️
Leave a comment