Let P(x,y,z) be the point on the surface x y + 12 x + z 2 = 144 xy + 12x + z^{2} = 144 x y + 12 x + z 2 = 144 . Then, distance between these two points is d = x 2 + y 2 + z 2 d = \sqrt{x^2+y^2+z^2} d = x 2 + y 2 + z 2 . We have to find the point (x, y, z) which is at a minimum distance from origin. We now use Lagrange's multipliers to find the shortest distance.
Let f ( x , y , z ) = d 2 = x 2 + y 2 + z 2 f(x,y,z) = d^{2} = x^{2} + y^{2} + z^{2} f ( x , y , z ) = d 2 = x 2 + y 2 + z 2 and g ( x , y , z ) = x y + 12 x + z 2 = 144 g(x,y,z) = xy+12x+z^{2} = 144 g ( x , y , z ) = x y + 12 x + z 2 = 144 .
Let
F ( x , y , z ) = f ( x , y , z ) + λ g ( x , y , z ) = x 2 + y 2 + z 2 + λ ( x y + 12 x + z 2 − 144 ) F(x,y,z) = f(x,y,z) + \lambda g(x,y,z)\\ = x^{2} + y^{2}+z^{2}+\lambda(xy+12x+z^{2}-144) F ( x , y , z ) = f ( x , y , z ) + λ g ( x , y , z ) = x 2 + y 2 + z 2 + λ ( x y + 12 x + z 2 − 144 )
To find the point of shortest distance we have to solve,
∂ F ∂ x = 0 ; ∂ F ∂ y = 0 ; ∂ F ∂ z = 0 a n d ∂ F ∂ λ = 0. \dfrac{\partial F}{\partial x} = 0; \dfrac{\partial F}{\partial y} = 0; \dfrac{\partial F}{\partial z} = 0~ and ~\dfrac{\partial F}{\partial \lambda} = 0. ∂ x ∂ F = 0 ; ∂ y ∂ F = 0 ; ∂ z ∂ F = 0 an d ∂ λ ∂ F = 0.
2 x + λ ( y + 12 ) = 0 2 y + λ x = 0 2 z + 2 λ z = 0 x y + 12 x + z 2 = 144. 2x+\lambda(y+12) = 0\\
2y+\lambda x=0\\
2z+2\lambda z=0\\
xy+12x+z^2=144. 2 x + λ ( y + 12 ) = 0 2 y + λ x = 0 2 z + 2 λ z = 0 x y + 12 x + z 2 = 144.
From the third equation, we get z = 0 or λ = − 1 z=0~~\text{or}~~ \lambda =-1 z = 0 or λ = − 1 . When λ = − 1 \lambda =-1 λ = − 1 , first and second equation becomes,
2 x − y = 12 − x + 2 y = 0. 2x-y=12\\
-x+2y=0. 2 x − y = 12 − x + 2 y = 0.
Solving we get, x = 8 , y = 4. x= 8, y=4. x = 8 , y = 4. From the constraint equation we get, z = ± 4. z = \pm 4. z = ± 4.
The critical points are ( 8 , 4 , − 4 ) , ( 8 , 4 , 4 ) . (8,4,-4), (8,4,4). ( 8 , 4 , − 4 ) , ( 8 , 4 , 4 ) .
Now when z = 0, the constraint becomes, x y + 12 x = 144. xy+12x=144. x y + 12 x = 144.
x ( y + 12 ) = 144 x = 144 y + 12 . x(y+12)=144\\
x=\dfrac{144}{y+12}. x ( y + 12 ) = 144 x = y + 12 144 . Using this in f(x,y), we get
f ( x , y ) = ( 144 y + 12 ) 2 + y 2 . f(x,y) = (\dfrac{144}{y+12})^{2}+y^2. f ( x , y ) = ( y + 12 144 ) 2 + y 2 .
Now we find the critical points of this one variable problem. We solve,
∂ f ∂ y = 0 − 2 ⋅ 14 4 2 ( y + 12 ) 3 + 2 y = 0 y ( y + 12 ) 3 − 14 4 2 = 0 y 4 + 36 y 3 + 432 y 2 + 1728 y − 20736 = 0 \dfrac{\partial f}{\partial y} = 0\\
-\dfrac{2 \cdot 144^2}{(y+12)^3}+2y =0\\
y(y+12)^3-144^2=0\\
y^4+36y^3+432y^2+1728y-20736=0 ∂ y ∂ f = 0 − ( y + 12 ) 3 2 ⋅ 14 4 2 + 2 y = 0 y ( y + 12 ) 3 − 14 4 2 = 0 y 4 + 36 y 3 + 432 y 2 + 1728 y − 20736 = 0
Solving this using online calculator, we get
y = − 9.366 ± 10.973 i y = − 21.83 y = 4.5633 y=-9.366\pm10.973i\\
y=-21.83\\
y=4.5633 y = − 9.366 ± 10.973 i y = − 21.83 y = 4.5633
Thus the critical points are, ( 8.694 , 4.5633 , 0 ) (8.694,4.5633,0) ( 8.694 , 4.5633 , 0 ) and ( − 14.65 , − 21.83 , 0 ) (-14.65,-21.83,0) ( − 14.65 , − 21.83 , 0 ) . The value of f at all critical points are,
f ( 8 , 4 , − 4 ) = 96 f ( 8 , 4 , 4 ) = 96 f ( 8.694 , 4.5633 , 0 ) = 96.41 f ( − 14.65 , − 21.83 , 0 ) = 691.17 f(8,4,-4)=96\\
f(8,4,4)=96\\
f(8.694,4.5633,0)=96.41\\
f(-14.65,-21.83,0)=691.17 f ( 8 , 4 , − 4 ) = 96 f ( 8 , 4 , 4 ) = 96 f ( 8.694 , 4.5633 , 0 ) = 96.41 f ( − 14.65 , − 21.83 , 0 ) = 691.17
Therefore, the shortest distance is d = 96 = 4 6 d = \sqrt{96} = 4\sqrt{6} d = 96 = 4 6 which is attained at ( 8 , 4 , ± 4 ) (8,4,\pm4) ( 8 , 4 , ± 4 ) .
Comments