Our box has 6 sides. Obviously, front and back sides are the same. So are top and bottom sides. And left and right sides too.
We can calculate areas of each side. And then multiplying it by its cost we can find its total price.
For example, dimentions of the front side are w w w and h h h . So area is S 1 = w h S_1=wh S 1 = w h . Its price is P 1 = 3 w h P_1=3wh P 1 = 3 w h . In this way we can construct function.
f ( w , l , h ) = 6 w h + 6 l h + 8 w l f(w,l,h)=6wh+6lh+8wl f ( w , l , h ) = 6 w h + 6 l h + 8 wl is a function which shows us the full price of the box.
Obviously, w l h = 452 wlh=452 wl h = 452 .
We should minimize f f f providing w l h = 452 wlh=452 wl h = 452 .
Let's construct Lagrange function.
L ( w , l , h ) = 6 w h + 6 l h + 8 w l + λ ( w l h − 452 ) L(w,l,h)=6wh+6lh+8wl+\lambda (wlh-452) L ( w , l , h ) = 6 w h + 6 l h + 8 wl + λ ( wl h − 452 )
Derivatives are:
∂ L ∂ w = 6 h + 8 l + λ l h \frac{\partial L}{\partial w}=6h+8l+\lambda lh ∂ w ∂ L = 6 h + 8 l + λ l h
∂ L ∂ l = 6 h + 8 w + λ w h \frac{\partial L}{\partial l}=6h+8w+\lambda wh ∂ l ∂ L = 6 h + 8 w + λ w h
∂ L ∂ h = 6 w + 6 l + λ w l \frac{\partial L}{\partial h}=6w+6l+\lambda wl ∂ h ∂ L = 6 w + 6 l + λ wl
Next step is to solve the system
{ 6 h + 8 l + λ l h = 0 6 h + 8 w + λ w h = 0 6 w + 6 l + λ w l = 0 w l h = 452 \begin {cases}
6h+8l+\lambda lh=0\\
6h+8w+\lambda wh=0\\
6w+6l+\lambda wl = 0\\
wlh=452
\end {cases} ⎩ ⎨ ⎧ 6 h + 8 l + λ l h = 0 6 h + 8 w + λ w h = 0 6 w + 6 l + λ wl = 0 wl h = 452 ⟺ \iff ⟺ { h ( 6 + λ l ) = − 8 l 6 h + 8 w + λ w h = 0 w ( 6 + λ l ) = − 6 l w l h = 452 \begin {cases}
h(6+\lambda l)=-8l\\
6h+8w+\lambda wh=0\\
w(6+\lambda l)=-6l\\
wlh=452
\end {cases} ⎩ ⎨ ⎧ h ( 6 + λ l ) = − 8 l 6 h + 8 w + λ w h = 0 w ( 6 + λ l ) = − 6 l wl h = 452 ⟺ \iff ⟺ { h = − 8 l ( 6 + λ l ) 6 h + 8 w + λ w h = 0 w = − 6 l ( 6 + λ l ) w l h = 452 \begin {cases}
h=\frac{-8l}{(6+\lambda l)}\\
6h+8w+\lambda wh=0\\
w=\frac {-6l}{(6+\lambda l)}\\
wlh=452
\end {cases} ⎩ ⎨ ⎧ h = ( 6 + λ l ) − 8 l 6 h + 8 w + λ w h = 0 w = ( 6 + λ l ) − 6 l wl h = 452 ⟺ \iff ⟺ { h = − 8 l ( 6 + λ l ) 6 − 8 l ( 6 + λ l ) + 8 − 6 l ( 6 + λ l ) + λ − 8 l ( 6 + λ l ) − 6 l ( 6 + λ l ) = 0 w = − 6 l ( 6 + λ l ) − 6 l ( 6 + λ l ) l − 8 l ( 6 + λ l ) = 452 \begin {cases}
h=\frac{-8l}{(6+\lambda l)}\\
6\frac{-8l}{(6+\lambda l)}+8\frac {-6l}{(6+\lambda l)}+\lambda \frac{-8l}{(6+\lambda l)}\frac {-6l}{(6+\lambda l)}=0\\
w=\frac {-6l}{(6+\lambda l)}\\
\frac {-6l}{(6+\lambda l)}l\frac{-8l}{(6+\lambda l)}=452
\end {cases} ⎩ ⎨ ⎧ h = ( 6 + λ l ) − 8 l 6 ( 6 + λ l ) − 8 l + 8 ( 6 + λ l ) − 6 l + λ ( 6 + λ l ) − 8 l ( 6 + λ l ) − 6 l = 0 w = ( 6 + λ l ) − 6 l ( 6 + λ l ) − 6 l l ( 6 + λ l ) − 8 l = 452 ⟺ \iff ⟺ { h = − 8 l ( 6 + λ l ) 2 l ( 6 + λ l ) = λ l 2 ( 6 + λ l ) 2 w = − 6 l ( 6 + λ l ) 48 l 3 ( 6 + λ l ) 2 = 452 \begin {cases}
h=\frac{-8l}{(6+\lambda l)}\\
\frac{2l}{(6+\lambda l)}= \frac{\lambda l^2}{(6+\lambda l)^2}\\
w=\frac {-6l}{(6+\lambda l)}\\
\frac {48l^3}{(6+\lambda l)^2}=452
\end {cases} ⎩ ⎨ ⎧ h = ( 6 + λ l ) − 8 l ( 6 + λ l ) 2 l = ( 6 + λ l ) 2 λ l 2 w = ( 6 + λ l ) − 6 l ( 6 + λ l ) 2 48 l 3 = 452 ⟺ \iff ⟺ { h = − 8 l ( 6 + λ l ) 2 l ( 6 + λ l ) = λ l 2 w = − 6 l ( 6 + λ l ) 48 l 3 ( 6 + λ l ) 2 = 452 \begin {cases}
h=\frac{-8l}{(6+\lambda l)}\\
2l(6+\lambda l)= \lambda l^2\\
w=\frac {-6l}{(6+\lambda l)}\\
\frac {48l^3}{(6+\lambda l)^2}=452
\end {cases} ⎩ ⎨ ⎧ h = ( 6 + λ l ) − 8 l 2 l ( 6 + λ l ) = λ l 2 w = ( 6 + λ l ) − 6 l ( 6 + λ l ) 2 48 l 3 = 452 ⟺ \iff ⟺ { h = − 8 l ( 6 + λ l ) λ l = − 12 w = − 6 l ( 6 + λ l ) 48 l 3 ( 6 + λ l ) 2 = 452 \begin {cases}
h=\frac{-8l}{(6+\lambda l)}\\
\lambda l=-12\\
w=\frac {-6l}{(6+\lambda l)}\\
\frac {48l^3}{(6+\lambda l)^2}=452
\end {cases} ⎩ ⎨ ⎧ h = ( 6 + λ l ) − 8 l λ l = − 12 w = ( 6 + λ l ) − 6 l ( 6 + λ l ) 2 48 l 3 = 452 ⟺ \iff ⟺ { h = 4 l 3 λ l = − 12 w = l 48 l 3 36 = 452 \begin {cases}
h=\frac {4l}{3}\\
\lambda l=-12\\
w=l\\
\frac {48l^3}{36}=452
\end {cases} ⎩ ⎨ ⎧ h = 3 4 l λ l = − 12 w = l 36 48 l 3 = 452
From the last equation it follows l 3 = 339 l^3=339 l 3 = 339 and finally, l = 339 3 l=\sqrt[3]{339} l = 3 339 (other roots are complex)
{ h = 4 339 3 3 λ = − 12 339 3 w = 339 3 l = 339 3 \begin {cases}
h=\frac {4\sqrt[3]{339}}{3}\\
\lambda = \frac {-12}{\sqrt[3]{339}}\\
w=\sqrt[3]{339}\\
l=\sqrt[3]{339}
\end {cases} ⎩ ⎨ ⎧ h = 3 4 3 339 λ = 3 339 − 12 w = 3 339 l = 3 339
Comments