Question #107934
Design a rectangular milk carton box of width w, length l, and height h which holds 452 cm3 of milk. The sides of the box cost 3 cent/cm2 and the top and bottom cost 4 cent/cm2. Find the dimensions of the box that minimize the total cost of materials used.

dimensions = ?

(Enter your answer as a comma separated list of lengths.)
1
Expert's answer
2020-04-11T16:43:16-0400

Our box has 6 sides. Obviously, front and back sides are the same. So are top and bottom sides. And left and right sides too.

We can calculate areas of each side. And then multiplying it by its cost we can find its total price.

For example, dimentions of the front side are ww and hh . So area is S1=whS_1=wh. Its price is P1=3whP_1=3wh . In this way we can construct function.

f(w,l,h)=6wh+6lh+8wlf(w,l,h)=6wh+6lh+8wl is a function which shows us the full price of the box.

Obviously, wlh=452wlh=452 .

We should minimize ff providing wlh=452wlh=452 .


Let's construct Lagrange function.

L(w,l,h)=6wh+6lh+8wl+λ(wlh452)L(w,l,h)=6wh+6lh+8wl+\lambda (wlh-452)

Derivatives are:

Lw=6h+8l+λlh\frac{\partial L}{\partial w}=6h+8l+\lambda lh

Ll=6h+8w+λwh\frac{\partial L}{\partial l}=6h+8w+\lambda wh

Lh=6w+6l+λwl\frac{\partial L}{\partial h}=6w+6l+\lambda wl


Next step is to solve the system

{6h+8l+λlh=06h+8w+λwh=06w+6l+λwl=0wlh=452\begin {cases} 6h+8l+\lambda lh=0\\ 6h+8w+\lambda wh=0\\ 6w+6l+\lambda wl = 0\\ wlh=452 \end {cases}     \iff {h(6+λl)=8l6h+8w+λwh=0w(6+λl)=6lwlh=452\begin {cases} h(6+\lambda l)=-8l\\ 6h+8w+\lambda wh=0\\ w(6+\lambda l)=-6l\\ wlh=452 \end {cases}     \iff {h=8l(6+λl)6h+8w+λwh=0w=6l(6+λl)wlh=452\begin {cases} h=\frac{-8l}{(6+\lambda l)}\\ 6h+8w+\lambda wh=0\\ w=\frac {-6l}{(6+\lambda l)}\\ wlh=452 \end {cases}     \iff {h=8l(6+λl)68l(6+λl)+86l(6+λl)+λ8l(6+λl)6l(6+λl)=0w=6l(6+λl)6l(6+λl)l8l(6+λl)=452\begin {cases} h=\frac{-8l}{(6+\lambda l)}\\ 6\frac{-8l}{(6+\lambda l)}+8\frac {-6l}{(6+\lambda l)}+\lambda \frac{-8l}{(6+\lambda l)}\frac {-6l}{(6+\lambda l)}=0\\ w=\frac {-6l}{(6+\lambda l)}\\ \frac {-6l}{(6+\lambda l)}l\frac{-8l}{(6+\lambda l)}=452 \end {cases}     \iff {h=8l(6+λl)2l(6+λl)=λl2(6+λl)2w=6l(6+λl)48l3(6+λl)2=452\begin {cases} h=\frac{-8l}{(6+\lambda l)}\\ \frac{2l}{(6+\lambda l)}= \frac{\lambda l^2}{(6+\lambda l)^2}\\ w=\frac {-6l}{(6+\lambda l)}\\ \frac {48l^3}{(6+\lambda l)^2}=452 \end {cases}     \iff {h=8l(6+λl)2l(6+λl)=λl2w=6l(6+λl)48l3(6+λl)2=452\begin {cases} h=\frac{-8l}{(6+\lambda l)}\\ 2l(6+\lambda l)= \lambda l^2\\ w=\frac {-6l}{(6+\lambda l)}\\ \frac {48l^3}{(6+\lambda l)^2}=452 \end {cases}     \iff {h=8l(6+λl)λl=12w=6l(6+λl)48l3(6+λl)2=452\begin {cases} h=\frac{-8l}{(6+\lambda l)}\\ \lambda l=-12\\ w=\frac {-6l}{(6+\lambda l)}\\ \frac {48l^3}{(6+\lambda l)^2}=452 \end {cases}     \iff {h=4l3λl=12w=l48l336=452\begin {cases} h=\frac {4l}{3}\\ \lambda l=-12\\ w=l\\ \frac {48l^3}{36}=452 \end {cases}

From the last equation it follows l3=339l^3=339 and finally, l=3393l=\sqrt[3]{339} (other roots are complex)

{h=433933λ=123393w=3393l=3393\begin {cases} h=\frac {4\sqrt[3]{339}}{3}\\ \lambda = \frac {-12}{\sqrt[3]{339}}\\ w=\sqrt[3]{339}\\ l=\sqrt[3]{339} \end {cases}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS