Question #107912
Suppose f(x,y)=(x−y)(16−xy). Find the saddle points of f.
1
Expert's answer
2020-04-06T16:07:15-0400
f(x,y)=(xy)(16xy)=16xx2y16y+xy2f(x, y)=(x-y)(16-xy)=16x-x^2y-16y+xy^2

Find the critical point(s)


fx=162xy+y2,fy=16+2xyx2f_x=16-2xy+y^2, f_y=-16+2xy-x^2

{fx=0fy=0=>{162xy+y2=016+2xyx2=0=>\begin{cases} f_x=0 \\ f_y=0 \end{cases}=> \begin{cases} 16-2xy+y^2=0 \\ -16+2xy-x^2=0 \end{cases}=>=>{(yx)(y+x)=016+2xyx2=0=> \begin{cases} (y-x)(y+x)=0 \\ -16+2xy-x^2=0 \end{cases}

Critical points: (4,4), (4,4), (4,4), (4,4)(-4,-4),\ (-4,4),\ (4,-4),\ (4,4)


Second Derivatives Test


fxx=2y,fxy=fyx=2x+2y,fyy=2xf_{xx}=-2y, f_{xy}=f_{yx}=-2x+2y, f_{yy}=2x


D=fxxfxyfyxfyy=2y2x+2y2x+2y2x=D=\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}=\begin{vmatrix} -2y & -2x+2y \\ -2x+2y & 2x \end{vmatrix}=

=4xy4y2+8xy4x2=4(x2xy+y2)=-4xy-4y^2 +8xy-4x^2=-4(x^2-xy+y^2)


x2xy+y2>0,xR,yR=>x^2-xy+y^2>0, x\in\R, y\in \R=>

=>D(x,y)<0,xR,tR=>D(x,y)<0, x\in\R, t\in \R

All critical points are saddle points.

(4,4):(-4,-4):


f(4,4)=(4(4))(16(4)(4))=0f(-4,-4)=(-4-(-4))(16-(-4)(-4))=0

(4,4):(-4,4):


f(4,4)=(44)(16(4)(4))=256f(-4,4)=(-4-4)(16-(-4)(4))=-256

(4,4):(4,-4):


f(4,4)=(4(4))(164(4))=256f(4,-4)=(4-(-4))(16-4(-4))=256

(4,4):(4,4):

f(4,4)=(44)(164(4))=0f(4,4)=(4-4)(16-4(4))=0

Saddle points: (4,4,0), (4,4,256), (4,4,256), (4,4,0)(-4,-4,0),\ (-4,4,-256),\ (4,-4,256),\ (4,4,0)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS