f(x,y)=(x−y)(16−xy)=16x−x2y−16y+xy2
Find the critical point(s)
fx=16−2xy+y2,fy=−16+2xy−x2
{fx=0fy=0=>{16−2xy+y2=0−16+2xy−x2=0=>=>{(y−x)(y+x)=0−16+2xy−x2=0Critical points: (−4,−4), (−4,4), (4,−4), (4,4)
Second Derivatives Test
fxx=−2y,fxy=fyx=−2x+2y,fyy=2x
D=∣∣fxxfyxfxyfyy∣∣=∣∣−2y−2x+2y−2x+2y2x∣∣=
=−4xy−4y2+8xy−4x2=−4(x2−xy+y2)
x2−xy+y2>0,x∈R,y∈R=>
=>D(x,y)<0,x∈R,t∈R All critical points are saddle points.
(−4,−4):
f(−4,−4)=(−4−(−4))(16−(−4)(−4))=0
(−4,4):
f(−4,4)=(−4−4)(16−(−4)(4))=−256
(4,−4):
f(4,−4)=(4−(−4))(16−4(−4))=256 (4,4):
f(4,4)=(4−4)(16−4(4))=0
Saddle points: (−4,−4,0), (−4,4,−256), (4,−4,256), (4,4,0)
Comments