Find the critical point(s)
"\\begin{cases}\n f_x=0 \\\\\n f_y=0\n\\end{cases}=> \\begin{cases}\n 16-2xy+y^2=0 \\\\\n -16+2xy-x^2=0\n\\end{cases}=>""=> \\begin{cases}\n (y-x)(y+x)=0 \\\\\n -16+2xy-x^2=0\n\\end{cases}"
Critical points: "(-4,-4),\\ (-4,4),\\ (4,-4),\\ (4,4)"
Second Derivatives Test
"=-4xy-4y^2 +8xy-4x^2=-4(x^2-xy+y^2)"
"x^2-xy+y^2>0, x\\in\\R, y\\in \\R=>"
"=>D(x,y)<0, x\\in\\R, t\\in \\R"
All critical points are saddle points.
"(-4,-4):"
"(-4,4):"
"(4,-4):"
"(4,4):"
"f(4,4)=(4-4)(16-4(4))=0"
Saddle points: "(-4,-4,0),\\ (-4,4,-256),\\ (4,-4,256),\\ (4,4,0)"
Comments
Leave a comment