The solid V and its projection on the "xy-"plane are given in Figures 01 and 02.
The lower and upper surfaces of the "V" are planes "z=0" and "z=x." Describe "V" as a region
If the density function "f(x, y, z)=k, k=const," then the mass is
"=k\\displaystyle\\int_{-1}^1\\displaystyle\\int_{y^2}^1(x-0)dxdy=k\\displaystyle\\int_{-1}^1\\bigg[{x^2\\over 2}\\bigg]\\begin{matrix}\n 1 \\\\\n y^2\n\\end{matrix}\\ dy="
"={k\\over 2}(1-{1\\over 5}+1-{1\\over 5})={4k\\over 5}"
Consider a function which is bounded by the curves "z=g_1(x, y)" and "z=g_2(x, y)"
Then we say that the region is symmetric about "y-" axis and hence "M_{xz}=0," and the "y-"coordinate of the center of mass is zero "\\bar{y}=0."
"=k\\displaystyle\\int_{-1}^1\\displaystyle\\int_{y^2}^1x(x-0)dxdy=k\\displaystyle\\int_{-1}^1\\bigg[{x^3\\over 3}\\bigg]\\begin{matrix}\n 1 \\\\\n y^2\n\\end{matrix}\\ dy="
"={k\\over 3}\\displaystyle\\int_{-1}^1(1-y^6)dy={k\\over 3}\\bigg[y-{y^7\\over7}\\bigg]\\begin{matrix}\n 1 \\\\\n -1\n\\end{matrix}="
"={k\\over 3}(1-{1\\over 7}+1-{1\\over 7})={4k\\over 7}"
"M_{xy}=\\iiint_VzfdV=\\displaystyle\\int_{-1}^1\\displaystyle\\int_{y^2}^1\\displaystyle\\int_{0}^xkzdzdxdy="
"={k\\over 2}\\displaystyle\\int_{-1}^1\\displaystyle\\int_{y^2}^1x^2 dxdy={k\\over 2}\\displaystyle\\int_{-1}^1\\bigg[{x^3\\over 3}\\bigg]\\begin{matrix}\n 1 \\\\\n y^2\n\\end{matrix}\\ dy="
"={k\\over 6}\\displaystyle\\int_{-1}^1(1-y^6)dy={k\\over 6}\\bigg[y-{y^7\\over7}\\bigg]\\begin{matrix}\n 1 \\\\\n -1\n\\end{matrix}="
"={k\\over 6}(1-{1\\over 7}+1-{1\\over 7})={2k\\over 7}"
Therefore, the centre of mass is
Comments
Leave a comment