Question #107842
Find the center of mass (gravity) of a solid of constant density that is bounded by the parabolic
cylinder x = y
2
and the planes x = z, z = 0, and x = 1. (
1
Expert's answer
2020-04-03T15:53:59-0400

The solid V and its projection on the xyxy-plane are given in Figures 01 and 02.



The lower and upper surfaces of the VV are planes z=0z=0 and z=x.z=x. Describe VV as a region


V=[(x,y,z):1y1,y2x1,0zx]V=[(x,y,z):-1\leq y\leq 1, y^2\leq x\leq 1,0\leq z\leq x]

If the density function f(x,y,z)=k,k=const,f(x, y, z)=k, k=const, then the mass is


m=VfdV=11y210xkdzdxdy=m=\iiint_VfdV=\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1\displaystyle\int_{0}^xkdzdxdy=

=k11y21(x0)dxdy=k11[x22]1y2 dy==k\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1(x-0)dxdy=k\displaystyle\int_{-1}^1\bigg[{x^2\over 2}\bigg]\begin{matrix} 1 \\ y^2 \end{matrix}\ dy=


=k211(1y4)dy=k2[yy55]11=={k\over 2}\displaystyle\int_{-1}^1(1-y^4)dy={k\over 2}\bigg[y-{y^5\over5}\bigg]\begin{matrix} 1 \\ -1 \end{matrix}=

=k2(115+115)=4k5={k\over 2}(1-{1\over 5}+1-{1\over 5})={4k\over 5}

Consider a function which is bounded by the curves z=g1(x,y)z=g_1(x, y)  and z=g2(x,y)z=g_2(x, y)


g1(x,y)=g1(x,y), g2(x,y)=g2(x,y)g_1(x, -y)=g_1(x, y), \ g_2(x, -y)=g_2(x, y)

Then we say that the region is symmetric about yy- axis and hence Mxz=0,M_{xz}=0, and the yy-coordinate of the center of mass is zero yˉ=0.\bar{y}=0.


Myz=VxfdV=11y210xkxdzdxdy=M_{yz}=\iiint_VxfdV=\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1\displaystyle\int_{0}^xkxdzdxdy=

=k11y21x(x0)dxdy=k11[x33]1y2 dy==k\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1x(x-0)dxdy=k\displaystyle\int_{-1}^1\bigg[{x^3\over 3}\bigg]\begin{matrix} 1 \\ y^2 \end{matrix}\ dy=

=k311(1y6)dy=k3[yy77]11=={k\over 3}\displaystyle\int_{-1}^1(1-y^6)dy={k\over 3}\bigg[y-{y^7\over7}\bigg]\begin{matrix} 1 \\ -1 \end{matrix}=

=k3(117+117)=4k7={k\over 3}(1-{1\over 7}+1-{1\over 7})={4k\over 7}

Mxy=VzfdV=11y210xkzdzdxdy=M_{xy}=\iiint_VzfdV=\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1\displaystyle\int_{0}^xkzdzdxdy=

=k211y21x2dxdy=k211[x33]1y2 dy=={k\over 2}\displaystyle\int_{-1}^1\displaystyle\int_{y^2}^1x^2 dxdy={k\over 2}\displaystyle\int_{-1}^1\bigg[{x^3\over 3}\bigg]\begin{matrix} 1 \\ y^2 \end{matrix}\ dy=

=k611(1y6)dy=k6[yy77]11=={k\over 6}\displaystyle\int_{-1}^1(1-y^6)dy={k\over 6}\bigg[y-{y^7\over7}\bigg]\begin{matrix} 1 \\ -1 \end{matrix}=

=k6(117+117)=2k7={k\over 6}(1-{1\over 7}+1-{1\over 7})={2k\over 7}

Therefore, the centre of mass is


(xˉ,yˉ,zˉ)=(Myzm,Mxzm,Mxym)=(57, 0, 514)(\bar{x}, \bar{y},\bar{z})=\big({M_{yz}\over m},{M_{xz}\over m},{M_{xy}\over m}\big)=\big({5\over 7},\ 0,\ {5\over 14}\big)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS