a) Ans:
Let I = ∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x \text{Let} \ I=\int ( 3x+1)\sqrt{4x^2+12x+5} \ dx Let I = ∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x
Let 3 x + 1 ≡ α ( derivative of 4 x 2 + 12 x + 5 ) + β 3x+1\equiv \alpha(\text{derivative of }4x^2+12x+5)+\beta 3 x + 1 ≡ α ( derivative of 4 x 2 + 12 x + 5 ) + β
⟹ 3 x + 1 = α ( 8 x + 12 ) + β \implies \ 3x+1=\alpha(8x+12)+\beta ⟹ 3 x + 1 = α ( 8 x + 12 ) + β
⟹ 3 x + 1 = 8 α x + ( 12 α + β ) \implies \ 3x+1=8\alpha x+(12\alpha+\beta) ⟹ 3 x + 1 = 8 αx + ( 12 α + β )
On equating the coefficients of constant term and variable x both side ,we get
8 α = 3 a n d 12 α + β = 1 8\alpha=3 \ and \ 12\alpha+\beta=1 8 α = 3 an d 12 α + β = 1
α = 3 8 a n d β = 1 − 12 α \alpha=\frac{3}{8} \ and \ \beta=1-12\alpha α = 8 3 an d β = 1 − 12 α
= 1 − 12 × 3 8 =1-12×\frac{3}{8} = 1 − 12 × 8 3
= − 7 2 =\frac{-7}{2} = 2 − 7
∴ 3 x + 1 = 3 8 ( 8 x + 12 ) − 7 2 \therefore 3x+1=\frac{3}{8}(8x+12)-\frac{7}{2} ∴ 3 x + 1 = 8 3 ( 8 x + 12 ) − 2 7
∴ I = 3 8 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 − 7 2 ∫ 4 x 2 + 12 x + 5 \therefore I=\frac{3}{8}\intop (8x+12)\sqrt{4x^2+12x+5} \ -\frac{7}{2}\int\sqrt{4x^2+12x+5} ∴ I = 8 3 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 − 2 7 ∫ 4 x 2 + 12 x + 5
= I 1 − I 2 ( s a y s ) =I_1-I_2 \ (says) = I 1 − I 2 ( s a ys )
Where, I 1 = 3 8 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 a n d I 2 = 7 2 ∫ 4 x 2 + 12 x + 5 I_1=\frac{3}{8}\int(8x+12)\sqrt{4x^2+12x+5} \ and \ I_2=\frac{7}{2}\int\sqrt{4x^2+12x+5} I 1 = 8 3 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 an d I 2 = 2 7 ∫ 4 x 2 + 12 x + 5
Let 4 x 2 + 12 x + 5 = t ⟹ d t d x = 8 x + 12 4x^2+12x+5=t \ \implies\frac{dt}{dx}=8x+12 4 x 2 + 12 x + 5 = t ⟹ d x d t = 8 x + 12
⟹ d t = ( 8 x + 12 ) d x \implies dt=(8x+12)dx ⟹ d t = ( 8 x + 12 ) d x .
∴ I 1 = 3 8 ∫ t d t = 3 8 × t 1 + 1 2 1 + 1 2 + c 1 \therefore I_1=\frac{3}{8}\int\sqrt{t} dt \ =\frac{3}{8} × \frac{t^{1+\frac{1}{2}}}{1+\frac{1}{2}}+c_1 ∴ I 1 = 8 3 ∫ t d t = 8 3 × 1 + 2 1 t 1 + 2 1 + c 1 = 3 8 × 2 3 × t 3 2 + c 1 w h e r e c 1 =\frac{3}{8}×\frac{2}{3}×t^{\frac{3}{2}}+c_1 \ where \ c_1 = 8 3 × 3 2 × t 2 3 + c 1 w h ere c 1 is a integration constant.
= 1 4 ( 4 x 2 + 12 x + 5 ) 3 2 + c 1 =\frac{1}{4} {(4x^2+12x+5)}^{\frac{3}{2}} +c_1 = 4 1 ( 4 x 2 + 12 x + 5 ) 2 3 + c 1
Now ,I 2 = 7 2 ∫ 4 x 2 + 12 x + 5 = 7 2 ∫ ( 2 x ) 2 + 2.2 x . 3 + 3 2 − 2 2 I_2=\frac{7}{2}\int\sqrt{4x^2+12x+5}=\frac{7}{2}\int\sqrt{{(2x)}^2+2.2x.3+3^2-2^2} I 2 = 2 7 ∫ 4 x 2 + 12 x + 5 = 2 7 ∫ ( 2 x ) 2 + 2.2 x .3 + 3 2 − 2 2
= 7 2 ∫ ( 2 x + 3 ) 2 − 2 2 =\frac{7}{2}\int\sqrt{{(2x+3)}^2-2^2} = 2 7 ∫ ( 2 x + 3 ) 2 − 2 2
Put 2 x + 3 = v ⟹ 2 = d v d t ⟹ d v = 2 d t 2x+3=v\implies 2=\frac{dv}{dt} \implies dv=2dt 2 x + 3 = v ⟹ 2 = d t d v ⟹ d v = 2 d t
∴ I 2 = 7 2 × 2 ∫ v 2 − 2 2 \therefore I_2=\frac{7}{2} × 2 \int\sqrt{v^2-2^2} ∴ I 2 = 2 7 × 2 ∫ v 2 − 2 2
Which is ,of the form ∫ x 2 − a 2 d x \int\sqrt{x^2-a^2}dx ∫ x 2 − a 2 d x ,therefore
I 2 = 7 ( v v 2 − 2 2 2 − 2 2 2 l o g ( v + v 2 − 2 2 ) ) + c 2 I_2=7 (\frac{v\sqrt{v^2-2^2}}{2} -\frac{2^2}{2}log(v+\sqrt{v^2-2^2}))+c_2 I 2 = 7 ( 2 v v 2 − 2 2 − 2 2 2 l o g ( v + v 2 − 2 2 )) + c 2
Where c 2 c_2 c 2 is an integration constant.
= 7 [ ( 2 x + 3 ) 4 x 2 + 12 x + 5 2 − 2 l o g ( 2 x + 3 + 4 x 2 + 12 x + 5 ] + c 2 =7[\frac{(2x+3)\sqrt{4x^2+12x+5}}{2}-2log(2x+3+\sqrt{4x^2+12x+5} \ ]+c_2 = 7 [ 2 ( 2 x + 3 ) 4 x 2 + 12 x + 5 − 2 l o g ( 2 x + 3 + 4 x 2 + 12 x + 5 ] + c 2
Therefore,
I = 1 4 × ( 4 x 2 + 12 x + 5 ) 3 2 − 7 2 ( 2 x + 3 ) 4 x 2 + 12 x + 5 + 2 l o g ( 2 x + 3 + 4 x 2 + 12 x + 5 ) + k I=\frac{1}{4}×{(4x^2+12x+5)}^\frac{3}{2}-\frac{7}{2}(2x+3)\sqrt{4x^2+12x+5}+2log(2x+3+\sqrt{4x^2+12x+5})+k I = 4 1 × ( 4 x 2 + 12 x + 5 ) 2 3 − 2 7 ( 2 x + 3 ) 4 x 2 + 12 x + 5 + 2 l o g ( 2 x + 3 + 4 x 2 + 12 x + 5 ) + k
where , k = c 1 − c 2 \text{where}, k=c_1-c_2 where , k = c 1 − c 2 is a integration constant.
b)Ans:
∫ x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) = ∫ ( x 2 + 4 ) + ( x + 1 ) ( x 2 + 4 ) ( x + 1 ) \int\frac{x^2+x+5}{(x^2+4)(x+1)}=\int\frac{(x^2+4)+(x+1)}{(x^2+4)(x+1)} ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 = ∫ ( x 2 + 4 ) ( x + 1 ) ( x 2 + 4 ) + ( x + 1 )
= ∫ x 2 + 4 ( x 2 + 4 ) ( x + 1 ) + ∫ x + 1 ( x 2 + 1 ) ( x + 1 ) =\int\frac{x^2+4}{(x^2+4)(x+1)}+\int\frac{x+1}{(x^2+1)(x+1)} = ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + 4 + ∫ ( x 2 + 1 ) ( x + 1 ) x + 1
= ∫ 1 x + 1 + ∫ 1 x 2 + 1 =\int\frac{1}{x+1}+\int\frac{1}{x^2+1} = ∫ x + 1 1 + ∫ x 2 + 1 1
= l o g ( x + 1 ) + t a n − 1 x + c =log(x+1)+tan^{-1}x+c = l o g ( x + 1 ) + t a n − 1 x + c
Where c is an integration constant.
Comments