a) Ans:
Let I=∫(3x+1)4x2+12x+5 dx
Let 3x+1≡α(derivative of 4x2+12x+5)+β
⟹ 3x+1=α(8x+12)+β
⟹ 3x+1=8αx+(12α+β)
On equating the coefficients of constant term and variable x both side ,we get
8α=3 and 12α+β=1
α=83 and β=1−12α
=1−12×83
=2−7
∴3x+1=83(8x+12)−27
∴I=83∫(8x+12)4x2+12x+5 −27∫4x2+12x+5
=I1−I2 (says)
Where, I1=83∫(8x+12)4x2+12x+5 and I2=27∫4x2+12x+5
Let 4x2+12x+5=t ⟹dxdt=8x+12
⟹dt=(8x+12)dx .
∴I1=83∫tdt =83×1+21t1+21+c1=83×32×t23+c1 where c1 is a integration constant.
=41(4x2+12x+5)23+c1
Now ,I2=27∫4x2+12x+5=27∫(2x)2+2.2x.3+32−22
=27∫(2x+3)2−22
Put 2x+3=v⟹2=dtdv⟹dv=2dt
∴I2=27×2∫v2−22
Which is ,of the form ∫x2−a2dx ,therefore
I2=7(2vv2−22−222log(v+v2−22))+c2
Where c2 is an integration constant.
=7[2(2x+3)4x2+12x+5−2log(2x+3+4x2+12x+5 ]+c2
Therefore,
I=41×(4x2+12x+5)23−27(2x+3)4x2+12x+5+2log(2x+3+4x2+12x+5)+k
where,k=c1−c2 is a integration constant.
b)Ans:
∫(x2+4)(x+1)x2+x+5=∫(x2+4)(x+1)(x2+4)+(x+1)
=∫(x2+4)(x+1)x2+4+∫(x2+1)(x+1)x+1
=∫x+11+∫x2+11
=log(x+1)+tan−1x+c
Where c is an integration constant.
Comments