Question #107655
a) integrate (3x+1)√4x^2 + 12x + 5 dx
b) integrate x^2+x+5 / (x^2+4)(x+1)
1
Expert's answer
2020-04-13T12:28:49-0400

a) Ans:


Let I=(3x+1)4x2+12x+5 dx\text{Let} \ I=\int ( 3x+1)\sqrt{4x^2+12x+5} \ dx


Let 3x+1α(derivative of 4x2+12x+5)+β3x+1\equiv \alpha(\text{derivative of }4x^2+12x+5)+\beta

     3x+1=α(8x+12)+β\implies \ 3x+1=\alpha(8x+12)+\beta

     3x+1=8αx+(12α+β)\implies \ 3x+1=8\alpha x+(12\alpha+\beta)

On equating the coefficients of constant term and variable x both side ,we get

8α=3 and 12α+β=18\alpha=3 \ and \ 12\alpha+\beta=1

α=38 and β=112α\alpha=\frac{3}{8} \ and \ \beta=1-12\alpha

=112×38=1-12×\frac{3}{8}

=72=\frac{-7}{2}

3x+1=38(8x+12)72\therefore 3x+1=\frac{3}{8}(8x+12)-\frac{7}{2}


I=38(8x+12)4x2+12x+5 724x2+12x+5\therefore I=\frac{3}{8}\intop (8x+12)\sqrt{4x^2+12x+5} \ -\frac{7}{2}\int\sqrt{4x^2+12x+5}

=I1I2 (says)=I_1-I_2 \ (says)


Where, I1=38(8x+12)4x2+12x+5 and I2=724x2+12x+5I_1=\frac{3}{8}\int(8x+12)\sqrt{4x^2+12x+5} \ and \ I_2=\frac{7}{2}\int\sqrt{4x^2+12x+5}


Let 4x2+12x+5=t     dtdx=8x+124x^2+12x+5=t \ \implies\frac{dt}{dx}=8x+12

    dt=(8x+12)dx\implies dt=(8x+12)dx .



I1=38tdt =38×t1+121+12+c1\therefore I_1=\frac{3}{8}\int\sqrt{t} dt \ =\frac{3}{8} × \frac{t^{1+\frac{1}{2}}}{1+\frac{1}{2}}+c_1

=38×23×t32+c1 where c1=\frac{3}{8}×\frac{2}{3}×t^{\frac{3}{2}}+c_1 \ where \ c_1 is a integration constant.

=14(4x2+12x+5)32+c1=\frac{1}{4} {(4x^2+12x+5)}^{\frac{3}{2}} +c_1


Now ,I2=724x2+12x+5=72(2x)2+2.2x.3+3222I_2=\frac{7}{2}\int\sqrt{4x^2+12x+5}=\frac{7}{2}\int\sqrt{{(2x)}^2+2.2x.3+3^2-2^2}


=72(2x+3)222=\frac{7}{2}\int\sqrt{{(2x+3)}^2-2^2}


Put 2x+3=v    2=dvdt    dv=2dt2x+3=v\implies 2=\frac{dv}{dt} \implies dv=2dt


I2=72×2v222\therefore I_2=\frac{7}{2} × 2 \int\sqrt{v^2-2^2}

Which is ,of the form x2a2dx\int\sqrt{x^2-a^2}dx ,therefore

I2=7(vv2222222log(v+v222))+c2I_2=7 (\frac{v\sqrt{v^2-2^2}}{2} -\frac{2^2}{2}log(v+\sqrt{v^2-2^2}))+c_2

Where c2c_2 is an integration constant.

=7[(2x+3)4x2+12x+522log(2x+3+4x2+12x+5 ]+c2=7[\frac{(2x+3)\sqrt{4x^2+12x+5}}{2}-2log(2x+3+\sqrt{4x^2+12x+5} \ ]+c_2


Therefore,

I=14×(4x2+12x+5)3272(2x+3)4x2+12x+5+2log(2x+3+4x2+12x+5)+kI=\frac{1}{4}×{(4x^2+12x+5)}^\frac{3}{2}-\frac{7}{2}(2x+3)\sqrt{4x^2+12x+5}+2log(2x+3+\sqrt{4x^2+12x+5})+k

where,k=c1c2\text{where}, k=c_1-c_2 is a integration constant.


b)Ans:


x2+x+5(x2+4)(x+1)=(x2+4)+(x+1)(x2+4)(x+1)\int\frac{x^2+x+5}{(x^2+4)(x+1)}=\int\frac{(x^2+4)+(x+1)}{(x^2+4)(x+1)}




=x2+4(x2+4)(x+1)+x+1(x2+1)(x+1)=\int\frac{x^2+4}{(x^2+4)(x+1)}+\int\frac{x+1}{(x^2+1)(x+1)}


=1x+1+1x2+1=\int\frac{1}{x+1}+\int\frac{1}{x^2+1}



=log(x+1)+tan1x+c=log(x+1)+tan^{-1}x+c

Where c is an integration constant.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS