Question #107192
Compute fxy and fyx for the function f(x,y) = e^(x+y) +9x^2 +2xy at (1,2).
1
Expert's answer
2020-04-02T13:14:01-0400

f(x,y)=expx+y+9x2+2xy.f(x,y)=\exp^{x+y}+9x^2+2xy.

Find fxyf_{xy} and fyxf_{yx} at (1,2).

Find first fxf_x and fyf_y

fx=x(expx+y+9x2+2xy)=expx+y+18x+2y,f_x=\frac{\partial}{\partial x}(\exp^{x+y}+9x^2+2xy)=\exp^{x+y}+18x+2y,

fy=y(expx+y+9x2+2xy)=expx+y+2x.f_y=\frac{\partial}{\partial y}(\exp^{x+y}+9x^2+2xy)=\exp^{x+y}+2x.

To find fxyf_{xy} and fyxf_{yx} take the partial derivative of fxf_{x} with respect to yy and fyf_{y} with respect to xx respectively.

fxy=y(expx+y+18x+2y)=expx+y+2,f_{xy}=\frac{\partial}{\partial y}(\exp^{x+y}+18x+2y)=\exp^{x+y}+2,

fyx=x(expx+y+2x)=expx+y+2.f_{yx}=\frac{\partial}{\partial x}(\exp^{x+y}+2x)=\exp^{x+y}+2.

So,

fxy(1,2)=fyx(1,2)=exp1+2+2=exp3+2f_{xy}(1,2)=f_{yx}(1,2)=\exp^{1+2}+2=\exp^{3}+2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS