dydt=d(2e−t)dtsin3t+2e−td(sin3t)dt=−2e−tsin3t+2e−t⋅3cos3t=2e−t(−sin3t+3cos3t)\dfrac{dy}{dt}=\dfrac{d(2e^{-t})}{dt}\sin3t+2e^{-t}\dfrac{d(\sin3t)}{dt}= -2e^{-t}\sin3t+2e^{-t}\cdot 3\cos3t=2e^{-t}(-\sin 3t+3\cos 3t)dtdy=dtd(2e−t)sin3t+2e−tdtd(sin3t)=−2e−tsin3t+2e−t⋅3cos3t=2e−t(−sin3t+3cos3t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment