Quotient rule:
d(uv)=v⋅du−u⋅dvv2d\left(\frac{u}{v}\right)=\frac{v\cdot du-u\cdot dv}{v^2}d(vu)=v2v⋅du−u⋅dv
Given function
y=sintty=\frac{sint}{t}y=tsint
Differentiating with respect to t using quotient rule
dydt=t⋅ddt(sint)−sint⋅ddt(t)t2\frac{dy}{dt}=\frac{t\cdot \frac{d}{dt}\left(sint\right)-sint\cdot \frac{d}{dt}\left(t\right)}{t^2}dtdy=t2t⋅dtd(sint)−sint⋅dtd(t)
we know ddt(sint)=cost and ddt(t)=1\frac{d}{dt}\left(sint\right)=cost\:\:and\:\frac{d}{dt}\left(t\right)=1dtd(sint)=costanddtd(t)=1
dydt=t⋅cost−sint⋅1t2\frac{dy}{dt}=\frac{t\cdot cost-sint\cdot 1}{t^2}dtdy=t2t⋅cost−sint⋅1
dydt=t⋅cost−sintt2\frac{dy}{dt}=\frac{t\cdot cost-sint}{t^2}dtdy=t2t⋅cost−sint
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments