Evaluate the line integral "\\oint_C2ds" where "C" is the unit circle.
We first need parametric equations to represent "C." The unit circle can be parametrized by means of the equations
"{dx \\over dt}=-\\sin t,\\ {dy \\over dt}=\\cos t"
"\\sqrt{\\big({dx \\over dt}\\big)^2+\\big({dy \\over dt}\\big)^2}=\\sqrt{\\big(-\\sin t\\big)^2+\\big(\\cos t\\big)^2}=1"
"\\oint_C2ds=\\displaystyle\\int_{0}^{2\\pi}2(1)dt=2\\big[t\\big]\\begin{matrix}\n 2\\pi \\\\\n 0\n\\end{matrix}=2(2\\pi-0)=4\\pi"
Comments
Leave a comment