Question #106529
Show the COMPLETE solution on the given problems.

1. Evaluate the line integral ∮2
1
Expert's answer
2020-03-26T13:04:06-0400

Evaluate the line integral C2ds\oint_C2ds where CC is the unit circle.


Cf(x,y)ds=abf(x(t),y(t))(dxdt)2+(dydt)2dt\oint_Cf(x, y)ds=\displaystyle\int_{a}^bf(x(t),y(t))\sqrt{\big({dx \over dt}\big)^2+\big({dy \over dt}\big)^2}dt

We first need parametric equations to represent C.C. The unit circle can be parametrized by means of the equations


x=cost,y=sint, 0t2π.x=\cos t, y=\sin t, \ 0\leq t\leq2\pi.

dxdt=sint, dydt=cost{dx \over dt}=-\sin t,\ {dy \over dt}=\cos t

(dxdt)2+(dydt)2=(sint)2+(cost)2=1\sqrt{\big({dx \over dt}\big)^2+\big({dy \over dt}\big)^2}=\sqrt{\big(-\sin t\big)^2+\big(\cos t\big)^2}=1

C2ds=02π2(1)dt=2[t]2π0=2(2π0)=4π\oint_C2ds=\displaystyle\int_{0}^{2\pi}2(1)dt=2\big[t\big]\begin{matrix} 2\pi \\ 0 \end{matrix}=2(2\pi-0)=4\pi



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS