Evaluate the line integral ∮C2ds where C is the unit circle.
∮Cf(x,y)ds=∫abf(x(t),y(t))(dtdx)2+(dtdy)2dt We first need parametric equations to represent C. The unit circle can be parametrized by means of the equations
x=cost,y=sint, 0≤t≤2π.
dtdx=−sint, dtdy=cost
(dtdx)2+(dtdy)2=(−sint)2+(cost)2=1
∮C2ds=∫02π2(1)dt=2[t]2π0=2(2π−0)=4π
Comments