Answer to Question #106418 in Calculus for Suraj Singh

Question #106418
solve by method of undetermined coefficient : y'' + 2(y') + 5y = x(e^-x)cos(2x)
1
Expert's answer
2020-03-25T12:39:57-0400

y+2y+5y=xexcos(2x)y''+2y'+5y=xe^{-x}\cos(2x)

General solution will be sum of the complementary solution and particular solution.

Find the complementary solution by solving y+2y+5y=0y''+2y'+5y=0

Assume a solution will be proportional to eλxe^{\lambda x} for some constant λ\lambda

Substitute y(x)=eλxy(x)=e^{\lambda x} into the differential equation

(λ2+2λ+5)eλx=0(\lambda^2+2\lambda+5)e^{\lambda x}=0

solve for λ\lambda : λ=1+2i\lambda = -1+2i or λ=12i\lambda=-1-2i

These roots give this general solution

yg(x)=c1excos2x+c2exsin2xy_g(x)=c_1e^{-x}\cos{2x}+c_2e^{-x}\sin{2x}

To find partial solution, we put into equation this form of solution

yp(x)=axexcos(2x)+bxexsin(2x)+cx2excos(2x)+dx2exsin(2x)y_p(x)=axe^{-x}\cos(2x)+bxe^{-x}\sin(2x)+cx^2e^{-x}\cos(2x)+dx^2e^{-x}\sin(2x)

and by computing first and second derivative and putting everything into equation, we determine all the coefficients

Partial solution:

yp(x)=1/16xexcos2x+1/8x2exsin2xy_p(x)=1/16xe^{-x}\cos{2x}+1/8x^2e^{-x}\sin{2x}

Then y(x)=yg(x)+yp(x)=c1excos2x+c2exsin2x+1/16xexcos2x+1/8x2exsin2xy(x)=y_g(x)+y_p(x)=c_1e^{-x}\cos{2x}+c_2e^{-x}\sin{2x}+1/16xe^{-x}\cos{2x}+1/8x^2e^{-x}\sin{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment