where "\\vec{i}, \\vec{j}, \\vec{k}" are unit vectors.
Finding a derivative:
"\\frac{d\\vec{p}}{dt}=\\frac{d(\\sin{t})}{dt}\\vec{i}+\\frac{d(\\cos{t})}{dt}\\vec{j}+\\frac{dt}{dt}\\vec{k}=(\\cos{t})\\vec{i}-(\\sin{t})\\vec{j}+\\vec{k}"
Finding a module for an arbitrary vector
is found by the formula:
Finding a module:
"|\\frac{d\\vec{p}}{dt}|=\\sqrt{(\\cos{t})^2+(-\\sin{t})^2+1^2}=\\sqrt{2}"
Comments
Leave a comment