Question #105777
For which values of a and b is the following equation true?
lim((sin(2x)/x^3)+a+(b/x^2))=0,x approaches to 0
1
Expert's answer
2020-03-19T11:57:43-0400

The limit equation is given by:

limx0(sin(2x)x3+a+bx2)=0\lim_{x \to 0} \left( \frac{sin(2x)}{x^3} + a + \frac{b}{x^2} \right) = 0

Separating the constant aa from the limit, we have:

limx0(sin(2x)x3+bx2)+a=0\lim_{x \to 0} \left( \frac{\sin (2x)}{x^3} + \frac{b}{x^2} \right) + a = 0

limx0(sin(2x)+bxx3)+a=0\Rightarrow \lim_{x \to 0} \left( \frac{ \sin (2x) + bx }{x^3} \right) + a = 0

After substituting the limit value x=0x = 0 into the limit function, we can see that we have 00\frac{0}{0} form is exist. So we will apply L'Hospital's Rule to this limit function.

Now:

We know that this rule states that if such indeterminate form 00\frac{0}{0} exists then we will take the derivatives of the numerator and denominator and substitute the limit value. This process will apply again and again until we get a finite value.

\\

Applying L'Hospital's Rule to the limit function, we have:

limx0(2cos(2x)+b3x2)+a=0\lim_{x \to 0} \left( \frac{2 \cos (2x) + b }{3x^2} \right) + a = 0

Substituting x=0x = 0 into the limit function, we have:

(2+b3(02))+a[cos(0)=1]\Rightarrow \left( \frac{2 + b}{3(0^2)} \right) + a \hspace{1 cm} \left[ \because \cos (0) = 1 \right]

After substituting x=0x = 0 into the limit function, we get \infty . But this result is not possible because the right hand side of the limit equation is zero. So, we have to find a value of bb so that b+2=0orb=2b + 2 = 0 \, or \, b = - 2

\\

Now:

Substituting b=2b = - 2 into the limit function we have:

limx0(2cos(2x)23x2)+a=0\lim_{x \to 0} \left( \frac{2 \cos(2x) - 2}{3x^2} \right) + a = 0

23limx0(cos(2x)1x2)+a=0\Rightarrow \frac{2}{3} \lim_{x \to 0} \left( \frac{\cos (2x) - 1}{x^2} \right) + a = 0

23limx0(2sin(2x)02x)+a=0\Rightarrow \frac{2}{3} \lim_{x \to 0} \left( \frac{ - 2 \sin (2x) - 0}{2x} \right) + a = 0 \hspace{1 cm} [ 00\because \frac{0}{0} form, so we used L'Hospital's Rule ]

23limx0(sin(2x)x)+a=0\Rightarrow - \frac{2}{3} \lim_{x \to 0} \left( \frac{ \sin (2x)}{x} \right) + a = 0

23limx0(2cos(2x)1)+a=0\Rightarrow - \frac{2}{3} \lim_{x \to 0} \left( \frac{2 \cos(2x)}{1} \right) + a = 0 \hspace{1 cm} [ 00\because \frac{0}{0} form, so we used L'Hospital's Rule ]

23(2cos(0))+a=0\Rightarrow - \frac{2}{3} \left( 2 \cos(0) \right) + a = 0 \hspace{1 cm} [ Substitute x=0x = 0 into the limit function ]

43+a=0[cos(0)=1]\Rightarrow - \frac{4}{3} + a = 0 \hspace{1 cm} \left[ \because \cos(0) = 1 \right]

a=43\Rightarrow a = \frac{4}{3}

Hence:

The values of aandba\, \, and \,\, b are 43and2\frac{4}{3} \, and \, -2 respectively.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS