The limit equation is given by:
"\\lim_{x \\to 0} \\left( \\frac{sin(2x)}{x^3} + a + \\frac{b}{x^2} \\right) = 0"
Separating the constant "a" from the limit, we have:
"\\lim_{x \\to 0} \\left( \\frac{\\sin (2x)}{x^3} + \\frac{b}{x^2} \\right) + a = 0"
"\\Rightarrow \\lim_{x \\to 0} \\left( \\frac{ \\sin (2x) + bx }{x^3} \\right) + a = 0"
After substituting the limit value "x = 0" into the limit function, we can see that we have "\\frac{0}{0}" form is exist. So we will apply L'Hospital's Rule to this limit function.
Now:
We know that this rule states that if such indeterminate form "\\frac{0}{0}" exists then we will take the derivatives of the numerator and denominator and substitute the limit value. This process will apply again and again until we get a finite value.
"\\\\"
Applying L'Hospital's Rule to the limit function, we have:
"\\lim_{x \\to 0} \\left( \\frac{2 \\cos (2x) + b }{3x^2} \\right) + a = 0"
Substituting "x = 0" into the limit function, we have:
"\\Rightarrow \\left( \\frac{2 + b}{3(0^2)} \\right) + a \\hspace{1 cm} \\left[ \\because \\cos (0) = 1 \\right]"
After substituting "x = 0" into the limit function, we get "\\infty" . But this result is not possible because the right hand side of the limit equation is zero. So, we have to find a value of "b" so that "b + 2 = 0 \\, or \\, b = - 2"
"\\\\"
Now:
Substituting "b = - 2" into the limit function we have:
"\\lim_{x \\to 0} \\left( \\frac{2 \\cos(2x) - 2}{3x^2} \\right) + a = 0"
"\\Rightarrow \\frac{2}{3} \\lim_{x \\to 0} \\left( \\frac{\\cos (2x) - 1}{x^2} \\right) + a = 0"
"\\Rightarrow \\frac{2}{3} \\lim_{x \\to 0} \\left( \\frac{ - 2 \\sin (2x) - 0}{2x} \\right) + a = 0" "\\hspace{1 cm}" [ "\\because \\frac{0}{0}" form, so we used L'Hospital's Rule ]
"\\Rightarrow - \\frac{2}{3} \\lim_{x \\to 0} \\left( \\frac{ \\sin (2x)}{x} \\right) + a = 0"
"\\Rightarrow - \\frac{2}{3} \\lim_{x \\to 0} \\left( \\frac{2 \\cos(2x)}{1} \\right) + a = 0 \\hspace{1 cm}" [ "\\because \\frac{0}{0}" form, so we used L'Hospital's Rule ]
"\\Rightarrow - \\frac{2}{3} \\left( 2 \\cos(0) \\right) + a = 0 \\hspace{1 cm}" [ Substitute "x = 0" into the limit function ]
"\\Rightarrow - \\frac{4}{3} + a = 0 \\hspace{1 cm} \\left[ \\because \\cos(0) = 1 \\right]"
"\\Rightarrow a = \\frac{4}{3}"
Hence:
The values of "a\\, \\, and \\,\\, b" are "\\frac{4}{3} \\, and \\, -2" respectively.
Comments
Leave a comment