(a) Diagram
Thus, to obtain ∂z/∂x and ∂z/∂y one should differentiate u = g(x, y).
∂x∂z=∂u∂z∂x∂u∂y∂z=∂u∂z∂y∂u
(b)
∂x∂z=∂u∂z∂x∂u=f′⋅2x∂y∂z=∂u∂z∂y∂u=−f′⋅2y
y∂x∂z+x∂y∂z=2xyf′−2xyf′=0.
QED
(c)yz=ln(x+z) .
Differentiate both sides with respect to x: y∂x∂z=x+z1(∂x∂z+1).
Express derivative:
∂x∂z(y−x+z1)=x+z1∂x∂z=y(x+z)−11
Differentiate both sides with respect to y: y∂y∂z+z=x+z1∂y∂z.
Express derivative:
∂y∂z=−y−x+z11=1−y(x+z)z(x+z).
Answer.
a)
∂x∂z=∂u∂z∂x∂u∂y∂z=∂u∂z∂y∂u
b)
y∂x∂z+x∂y∂z=0
c)
∂x∂z=y(x+z)−11
∂y∂z=1−y(x+z)z(x+z)
Comments