State whether the following statements are true or false. Give reasons for your answers (1) The function f:R^3®R, given by f( x, y, z) =|x|+|y|+|z| is differentiable at (2, 3,-1).
1
Expert's answer
2020-03-20T12:14:25-0400
There exist neighbourhood U of (2, 3, -1) such that"\\forall (x, y, z) \\in U, f(x, y, z) = x + y - z" by definition of the absolute value.So, if "(x, y, z) \\in U:\\\\""\\frac{\\partial f}{\\partial x} = \\frac{\\partial f}{\\partial y} = 1\\\\\n\\frac{\\partial f}{\\partial z} = -1\\\\" Since function "g(x, y, z) = const" is continuous, all partial derivatives of f(x, y, z) are continuous at (2, 3, -1). Thus, f(x, y, z) is differentiable at (2, 3, -1).
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment