y=3x2β1β
1) The domain xβ(ββ;β) .
2) Evenness, oddity
y(βx)=3(βx)2β1β=3x2β1β=y(x)
graph is symmetric about the axis Oy.
3) Continuity
the function is continuous xβ(ββ;β)
4) Periodicity
the function is not periodic
5) Intersection points with coordinate axes
Ox:y=03x2β1β=0x2β1=0x2=1x1β=1,x2β=β1A(1,0),B(β1,0)Oy:x=0y=302β1β=3β1β=β1C(0,β1)
6) Let's check the extremum
yβ²=((x2β1)31β)β²=32ββ
xβ
(x2β1)β32βyβ²=032ββ
xβ
(x2β1)β32β=0x1β=0,x2β=1,x3β=β1xβ(ββ;β1)βͺ(β1;0],yβxβ[0;1)βͺ(1,β),yβx=0βminyminβ=β1
7) Convex intervals
yβ²β²=32β(x2β1)β32ββ98ββ
x2β
(x2β1)β35βyβ²β²=032β(x2β1)β32ββ98ββ
x2β
(x2β1)β35β=0(x2β1)β35β(x2β1β34βx2)=0x1β=β1,x2β=1,31βx2=β1xβ(ββ;β1)βͺ(1,β)
since the second derivative is at this interval
yβ²β²<0 then
y is convex upward β©
xβ(β1,1)
since the second derivative is at this interval
yβ²β²>0 then
y is convex down βͺ
x=1,x=β1 are inflection points
8) Asymptotes
there are no vertical asymptotes
find oblique, horizontal asymptote y=kx+b
k=xββlimβxf(x)β=xββlimβx3x2β1ββ=0b=xββlimβ(f(x)βkx)=xββlimβ(3x2β1ββ0)=β
there are no oblique, horizontaltical asymptote y=kx+b
9)
xβββlimβ3x2β1β=+βxββlimβ3x2β1β=+β
Comments