Question #106008
Trace the curve y= cube root of x^2 -1 and state all the properties you use to trace it.
1
Expert's answer
2020-03-23T10:03:50-0400

y=x2βˆ’13y=\sqrt[3]{x^2-1}

1) The domain x∈(βˆ’βˆž;∞)x\in(-\infty;\infty) .

 2) Evenness, oddity

y(βˆ’x)=(βˆ’x)2βˆ’13=x2βˆ’13=y(x)y(-x)=\sqrt[3]{(-x)^2-1}=\sqrt[3]{x^2-1}=y(x)

graph is symmetric about the axis OyOy.

3)  Continuity

the function is continuous x∈(βˆ’βˆž;∞)x\in (-\infty;\infty)

 4) Periodicity

the function is not periodic

 5) Intersection points with coordinate axes

Ox:y=0x2βˆ’13=0x2βˆ’1=0x2=1x1=1,x2=βˆ’1A(1,0),B(βˆ’1,0)Oy:x=0y=02βˆ’13=βˆ’13=βˆ’1C(0,βˆ’1)Ox: y=0\\ \sqrt[3]{x^2-1}=0\\ x^2-1=0\\ x^2=1\\ x_1=1, x_2=-1\\ A(1,0), B(-1,0)\\ Oy:x=0\\ y=\sqrt[3]{0^2-1}=\sqrt[3]{-1}=-1\\ C(0,-1)

6) Let's check the extremum

yβ€²=((x2βˆ’1)13)β€²=23β‹…xβ‹…(x2βˆ’1)βˆ’23yβ€²=023β‹…xβ‹…(x2βˆ’1)βˆ’23=0x1=0,x2=1,x3=βˆ’1x∈(βˆ’βˆž;βˆ’1)βˆͺ(βˆ’1;0],yβ†˜x∈[0;1)βˆͺ(1,∞),yβ†—x=0βˆ’minymin=βˆ’1y'=((x^2-1)^\frac{1}{3})'=\frac{2}{3}\cdot x\cdot(x^2-1)^{-\frac{2}{3}}\\ y'=0\\ \frac{2}{3}\cdot x\cdot(x^2-1)^{-\frac{2}{3}}=0\\ x_1=0, x_2=1, x_3=-1\\ x\in(-\infty;-1)\cup(-1;0], y\searrow\\ x\in [0;1)\cup(1,\infty),y\nearrow\\ x=0-min\\ y_{min}=-1

7) Convex intervals

yβ€²β€²=23(x2βˆ’1)βˆ’23βˆ’89β‹…x2β‹…(x2βˆ’1)βˆ’53yβ€²β€²=023(x2βˆ’1)βˆ’23βˆ’89β‹…x2β‹…(x2βˆ’1)βˆ’53=0(x2βˆ’1)βˆ’53(x2βˆ’1βˆ’43x2)=0x1=βˆ’1,x2=1,13x2=βˆ’1x∈(βˆ’βˆž;βˆ’1)βˆͺ(1,∞)y''=\frac{2}{3}(x^2-1)^{-\frac{2}{3}}-\frac{8}{9}\cdot x^2\cdot(x^2-1)^{-\frac{5}{3}}\\ y''=0\\ \frac{2}{3}(x^2-1)^{-\frac{2}{3}}-\frac{8}{9}\cdot x^2\cdot(x^2-1)^{-\frac{5}{3}}=0\\ (x^2-1)^{-\frac{5}{3}}(x^2-1-\frac{4}{3}x^2)=0\\ x_1=-1,x_2=1, \frac{1}{3}x^2=-1\\ x\in (-\infty;-1)\cup(1,\infty)

since the second derivative is at this interval

yβ€²β€²<0y''<0 then

yy is convex upward ∩\cap

x∈(βˆ’1,1)x\in (-1,1)

since the second derivative is at this interval

yβ€²β€²>0y''>0 then

yy is convex down βˆͺ\cup

x=1,x=βˆ’1x=1, x=-1 are inflection points

8) Asymptotes

 there are no vertical asymptotes

 find oblique, horizontal asymptote y=kx+by=kx+b

k=lim⁑xβ†’βˆžf(x)x=lim⁑xβ†’βˆžx2βˆ’13x=0b=lim⁑xβ†’βˆž(f(x)βˆ’kx)=lim⁑xβ†’βˆž(x2βˆ’13βˆ’0)=∞k=\lim\limits_{ x\to\infty}\frac{f(x)}{x}=\lim\limits_{ x\to\infty}\frac{\sqrt[3]{x^2-1}}{x}=0\\ b=\lim\limits_{ x\to\infty}(f(x)-kx)=\lim\limits_{ x\to\infty}(\sqrt[3]{x^2-1}-0)=\infty

there are no oblique, horizontaltical asymptote y=kx+by=kx+b

9)

lim⁑xβ†’βˆ’βˆžx2βˆ’13=+∞lim⁑xβ†’βˆžx2βˆ’13=+∞\lim\limits_{x\to -\infty}\sqrt[3]{x^2-1}=+\infty\\ \lim\limits_{x\to\infty}\sqrt[3]{x^2-1}=+\infty


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS