"y=\\sqrt[3]{x^2-1}"
1) The domain "x\\in(-\\infty;\\infty)" .
2) Evenness, oddity
"y(-x)=\\sqrt[3]{(-x)^2-1}=\\sqrt[3]{x^2-1}=y(x)"
graph is symmetric about the axis "Oy".
3) Continuity
the function is continuous "x\\in (-\\infty;\\infty)"
4) Periodicity
the function is not periodic
5) Intersection points with coordinate axes
"Ox: y=0\\\\\n\\sqrt[3]{x^2-1}=0\\\\\nx^2-1=0\\\\\nx^2=1\\\\\nx_1=1, x_2=-1\\\\\nA(1,0), B(-1,0)\\\\\nOy:x=0\\\\\ny=\\sqrt[3]{0^2-1}=\\sqrt[3]{-1}=-1\\\\\nC(0,-1)"
6) Let's check the extremum
"y'=((x^2-1)^\\frac{1}{3})'=\\frac{2}{3}\\cdot x\\cdot(x^2-1)^{-\\frac{2}{3}}\\\\\ny'=0\\\\\n\\frac{2}{3}\\cdot x\\cdot(x^2-1)^{-\\frac{2}{3}}=0\\\\\nx_1=0, x_2=1, x_3=-1\\\\\nx\\in(-\\infty;-1)\\cup(-1;0], y\\searrow\\\\\nx\\in [0;1)\\cup(1,\\infty),y\\nearrow\\\\\nx=0-min\\\\\ny_{min}=-1"
7) Convex intervals
"y''=\\frac{2}{3}(x^2-1)^{-\\frac{2}{3}}-\\frac{8}{9}\\cdot x^2\\cdot(x^2-1)^{-\\frac{5}{3}}\\\\\ny''=0\\\\\n\\frac{2}{3}(x^2-1)^{-\\frac{2}{3}}-\\frac{8}{9}\\cdot x^2\\cdot(x^2-1)^{-\\frac{5}{3}}=0\\\\\n(x^2-1)^{-\\frac{5}{3}}(x^2-1-\\frac{4}{3}x^2)=0\\\\\nx_1=-1,x_2=1, \\frac{1}{3}x^2=-1\\\\\nx\\in (-\\infty;-1)\\cup(1,\\infty)"
since the second derivative is at this interval
"y''<0" then
"y" is convex upward "\\cap"
"x\\in (-1,1)"
since the second derivative is at this interval
"y''>0" then
"y" is convex down "\\cup"
"x=1, x=-1" are inflection points
8) Asymptotes
there are no vertical asymptotes
find oblique, horizontal asymptote "y=kx+b"
"k=\\lim\\limits_{ x\\to\\infty}\\frac{f(x)}{x}=\\lim\\limits_{ x\\to\\infty}\\frac{\\sqrt[3]{x^2-1}}{x}=0\\\\\nb=\\lim\\limits_{ x\\to\\infty}(f(x)-kx)=\\lim\\limits_{ x\\to\\infty}(\\sqrt[3]{x^2-1}-0)=\\infty"
there are no oblique, horizontaltical asymptote "y=kx+b"
9)
"\\lim\\limits_{x\\to -\\infty}\\sqrt[3]{x^2-1}=+\\infty\\\\\n\\lim\\limits_{x\\to\\infty}\\sqrt[3]{x^2-1}=+\\infty"
Comments
Leave a comment