y=3x2−1
1) The domain x∈(−∞;∞) .
2) Evenness, oddity
y(−x)=3(−x)2−1=3x2−1=y(x)
graph is symmetric about the axis Oy.
3) Continuity
the function is continuous x∈(−∞;∞)
4) Periodicity
the function is not periodic
5) Intersection points with coordinate axes
Ox:y=03x2−1=0x2−1=0x2=1x1=1,x2=−1A(1,0),B(−1,0)Oy:x=0y=302−1=3−1=−1C(0,−1)
6) Let's check the extremum
y′=((x2−1)31)′=32⋅x⋅(x2−1)−32y′=032⋅x⋅(x2−1)−32=0x1=0,x2=1,x3=−1x∈(−∞;−1)∪(−1;0],y↘x∈[0;1)∪(1,∞),y↗x=0−minymin=−1
7) Convex intervals
y′′=32(x2−1)−32−98⋅x2⋅(x2−1)−35y′′=032(x2−1)−32−98⋅x2⋅(x2−1)−35=0(x2−1)−35(x2−1−34x2)=0x1=−1,x2=1,31x2=−1x∈(−∞;−1)∪(1,∞)
since the second derivative is at this interval
y′′<0 then
y is convex upward ∩
x∈(−1,1)
since the second derivative is at this interval
y′′>0 then
y is convex down ∪
x=1,x=−1 are inflection points
8) Asymptotes
there are no vertical asymptotes
find oblique, horizontal asymptote y=kx+b
k=x→∞limxf(x)=x→∞limx3x2−1=0b=x→∞lim(f(x)−kx)=x→∞lim(3x2−1−0)=∞
there are no oblique, horizontaltical asymptote y=kx+b
9)
x→−∞lim3x2−1=+∞x→∞lim3x2−1=+∞
Comments