Question #105974

Solve the following problems. Show complete solution.


1. Find the volume of the parallel piped with the vertices in the given order: (0, 0, 0), (3, 0, 0), (0, 5, 1), (2, 0 , 5), (3, 5, 1), (5, 0, 5), (2, 5, 6), and (5, 5, 6).




1
Expert's answer
2020-03-19T16:12:37-0400

Consider a parallelepiped  the vertices of which have coordinates

A(0,0,0)B(3,0,0),C(0,5,1),D(2,0,5),A1(3,5,1),B1(5,0,5),C1(2,5,6),D1(5,5,6)A(0,0,0)B(3,0,0), C(0,5,1), D(2,0,5), \\ A_1(3,5,1),B_1(5,0,5), C_1(2,5,6),D_1(5,5,6) .

 Form vectors

AB=(30,00,00)=(3,0,0)AC=(00,50,10)=(0,5,1)AD=(20,00,50)=(2,0,5)\overline{AB}=(3-0,0-0,0-0)=(3,0,0)\\ \overline{AC}=(0-0,5-0,1-0)=(0,5,1)\\ \overline{AD}=(2-0,0-0,5-0)=(2,0,5)

V=AB(AC×AD)AC×AD=(5105,0125,0520)==(250,(02),010)=(25,2,10)V=325+02+0(10)=75V=\overline{AB}\cdot (\overline{AC}\times \overline{AD})\\ \overline{AC}\times \overline{AD}=(\begin{vmatrix} 5 & 1 \\ 0 & 5 \end{vmatrix},-\begin{vmatrix} 0 & 1 \\ 2 & 5 \end{vmatrix},\begin{vmatrix} 0 & 5 \\ 2 &0 \end{vmatrix})=\\ =(25-0,-(0-2),0-10)=(25,2,-10)\\ V=3\cdot25+0\cdot2+0\cdot(-10)=75

Answer: V=75V=75



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS