Question #106079
Find the volume of the ellipsoid generated by revolving the ellipse
with the lengths of Major and Minor axis respectively as 20cm and
10cm about its major axis.
1
Expert's answer
2020-03-23T16:09:15-0400

ANSWER 1000π3\frac { 1000\pi }{ 3 } \quad

EXPLANATION. The volume of the body formed by the rotation of the curve G={(x,f(x)):axb}G=\left\{ \left( x,f(x) \right) :a\le x\le b \right\} around the x-axis is calculated by the integral πabf2(x)dx\pi \int _{ a }^{ b }{ { f }^{ 2 } } (x)dx . Ellipse with the axis 20cm and 10cm defined by the equation x2102+y252=1\frac { { x }^{ 2 } }{ { 10 }^{ 2 } } +\frac { { y }^{ 2 } }{ { 5 }^{ 2 } } =1 .Therefore the ellipsoid is formed by the rotation of the curve G={(x,f(x)):f2(x)=25(1x2102),10x10}G=\left\{ (x,f(x)):{ f }^{ 2 }(x)=25\left( 1-\frac { { x }^{ 2 } }{ { 10 }^{ 2 } } \right) ,-10\le x\le 10 \right\} . The volume of the ellipsoid is π101025(1x2102)dx=2π 010(25x24)dx=\pi \int _{ -10 }^{ 10 }{ 25\left( 1-\frac { { x }^{ 2 } }{ { 10 }^{ 2 } } \right) dx= } 2\pi \ \int _{ 0 }^{ 10 }{ \left( 25-\frac { { x }^{ 2 } }{ 4 } \right) } dx=

=500π= 500π - \frac { \pi }{ 2 } { ( \frac { { x }^{ 3 } }{ 3 } \ ) | }_{ 0 }^{ 10 }\ =500π500π3=1000π3=500\pi -\frac { 500\pi }{ 3 } =\frac { 1000\pi }{ 3 }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS