"y=\\sqrt{x+\\sqrt{x+\\sqrt{x}}}\\\\\n\\text{We apply chain rule while differentiating}\\\\\n\\frac{dy}{dx}=\\frac{d}{dx}(\\sqrt{x+\\sqrt{x+\\sqrt{x}}})\\\\\n\\text{We know that }\\frac{d}{dx}(\\sqrt{g(x)})=\\frac{1}{2\\sqrt{g(x)}} \\frac{d}{dx}(g(x))\\\\\n\\text{So, we have}\\\\\n \\frac{dy}{dx}=\\frac{d}{dx}(\\sqrt{x+\\sqrt{x+\\sqrt{x}}})\\\\\n\\;\\;\\;\\;\\;=\\frac{1}{2\\sqrt{x+\\sqrt{x+\\sqrt{x}}}}\\frac{d}{dx}(x+\\sqrt{x+\\sqrt{x}})\\\\\n\\;\\;\\;\\;\\;=\\frac{1}{2\\sqrt{x+\\sqrt{x+\\sqrt{x}}}}(1+\\frac{1}{2\\sqrt{x+\\sqrt{x}}}\\frac{d}{dx}(x+\\sqrt{x}))\\\\\n\\;\\;\\;\\;\\;=\\frac{1}{2\\sqrt{x+\\sqrt{x+\\sqrt{x}}}}(1+\\frac{1}{2\\sqrt{x+\\sqrt{x}}}(1+\\frac{1}{2\\sqrt{x}}))\\\\"
Comments
Leave a comment