Question #106458
Differentiate w.r.t x

y= √{x+√(x+√x)}
1
Expert's answer
2020-03-26T11:03:06-0400

y=x+x+xWe apply chain rule while differentiatingdydx=ddx(x+x+x)We know that ddx(g(x))=12g(x)ddx(g(x))So, we havedydx=ddx(x+x+x)          =12x+x+xddx(x+x+x)          =12x+x+x(1+12x+xddx(x+x))          =12x+x+x(1+12x+x(1+12x))y=\sqrt{x+\sqrt{x+\sqrt{x}}}\\ \text{We apply chain rule while differentiating}\\ \frac{dy}{dx}=\frac{d}{dx}(\sqrt{x+\sqrt{x+\sqrt{x}}})\\ \text{We know that }\frac{d}{dx}(\sqrt{g(x)})=\frac{1}{2\sqrt{g(x)}} \frac{d}{dx}(g(x))\\ \text{So, we have}\\ \frac{dy}{dx}=\frac{d}{dx}(\sqrt{x+\sqrt{x+\sqrt{x}}})\\ \;\;\;\;\;=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\frac{d}{dx}(x+\sqrt{x+\sqrt{x}})\\ \;\;\;\;\;=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}(1+\frac{1}{2\sqrt{x+\sqrt{x}}}\frac{d}{dx}(x+\sqrt{x}))\\ \;\;\;\;\;=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}(1+\frac{1}{2\sqrt{x+\sqrt{x}}}(1+\frac{1}{2\sqrt{x}}))\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS