Question #106440
Find the length of the portion of the parabola x=3t^2, y=6t cut off by the line 3x+y-3=0
1
Expert's answer
2020-03-25T12:38:10-0400

ANSWER : 103+32+3ln1+103(21)\frac { \sqrt { 10 } }{ 3 } +3\sqrt { 2 } +3\ln { \frac { 1+\sqrt { 10 } }{ 3(\sqrt { 2 } -1) } }

EXPLANATION.

The length L of the curve G={(x(t),y(t)):axb}G= \left\{ (x(t),y(t)):a\le x\le b \right\} is calculated by the formula

L=ab[x(t)]2+[y(t)]2dtL=\int _{ a }^{ b }{ \sqrt { { \left[ x'(t) \right] }^{ 2 }+{ \left[ y'(t) \right] }^{ 2 } } } dt . To determine the values of aa and bb we find the value of the parameter tt corresponding to the coordinates of the points of intersection of the parabola and the line. To do this , we solve the equation 3(3t2)+6t3=03(3t^2) +6t-3=0 or (3t+1)24=0(3t+1)^2-4=0 . Hence a=1,b=13a=-1, b=\frac { 1 }{ 3 } .x(t)=6t,y(t)=6, [x(t)]2+[y(t)]2=36t2+36x'(t)=6t,\quad y'(t)=6,\ \sqrt { { \left[ x'(t) \right] }^{ 2 }+{ \left[ y'(t) \right] }^{ 2 } } =\sqrt { 36{ t }^{ 2 }+36 }

L=611/31+t2dtL=6\int _{ -1 }^{ 1/3 }{ \sqrt { 1+t^{ 2 } } } dt =F(1/3)F(1)=F(1/3)-F(-1) , where F(t)=6[t21+t2+12lnt+1+t2]F(t)= 6 \left [ {\frac{t}{2}} \sqrt{1+t^2} +\frac{1}{2} \ln \left | t+\sqrt{1+t^2} \right | \right ] , F(1/3)=[103+3ln1+103]F(1/3)=\left[ \frac { \sqrt { 10 } }{ 3 } +3\ln { \frac { 1+\sqrt { 10 } }{ 3 } } \right] ,F(1)=[32+3ln(21)]F(-1)=\left[ -3\sqrt { 2 } +3\ln { (\sqrt { 2 } -1) } \right]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS