Show the complete solution on the following questions.
1. Evaluate "\\nabla \\cdot (F \\times G)," given "\ud835\udc39(\ud835\udc65,\ud835\udc66,\ud835\udc67) = \ud835\udc66\ud835\udc67 \\vec{\ud835\udc56} + \ud835\udc65\ud835\udc67\\vec{ \ud835\udc57} + \ud835\udc65\ud835\udc66\\vec{ \ud835\udc58}" and "\ud835\udc3a(\ud835\udc65,\ud835\udc66,\ud835\udc67) = \ud835\udc65\ud835\udc66 \\vec{\ud835\udc57} + \ud835\udc65\ud835\udc66\ud835\udc67\\vec{ \ud835\udc58}"
"F\u00d7G=(F_yG_z-F_zG_y)\\vec{i}+(F_zG_x-F_xG_z)\\vec{j}+(F_xG_y-F_yG_x)\\vec{k}"
"F\u00d7G=(x^2yz^2-x^2y^2)\\vec{i}+(-xy^2z^2)\\vec{j}+(xy^2z)\\vec{k}"
"\\nabla\u22c5(F\u00d7G)={\\frac \\partial {\\partial x}}(x^2yz^2-x^2y^2)+{\\frac \\partial {\\partial y}}(-xy^2z^2)+{\\frac \\partial {\\partial z}}(xy^2z)"
"\\nabla\u22c5(F\u00d7G)=2xyz^2-2xy^2-2xyz^2+xy^2=-xy^2"
Comments
Leave a comment