Show the complete solution on the following questions.
1. Evaluate ββ (FΓG),\nabla \cdot (F \times G),ββ (FΓG), given πΉ(π₯,π¦,π§)=π¦π§πβ+π₯π§πβ+π₯π¦πβπΉ(π₯,π¦,π§) = π¦π§ \vec{π} + π₯π§\vec{ π} + π₯π¦\vec{ π}F(x,y,z)=yzi+xzjβ+xyk and πΊ(π₯,π¦,π§)=π₯π¦πβ+π₯π¦π§πβπΊ(π₯,π¦,π§) = π₯π¦ \vec{π} + π₯π¦π§\vec{ π}G(x,y,z)=xyjβ+xyzk
FΓG=(FyGzβFzGy)iβ+(FzGxβFxGz)jβ+(FxGyβFyGx)kβFΓG=(F_yG_z-F_zG_y)\vec{i}+(F_zG_x-F_xG_z)\vec{j}+(F_xG_y-F_yG_x)\vec{k}FΓG=(FyβGzββFzβGyβ)i+(FzβGxββFxβGzβ)jβ+(FxβGyββFyβGxβ)k
FΓG=(x2yz2βx2y2)iβ+(βxy2z2)jβ+(xy2z)kβFΓG=(x^2yz^2-x^2y^2)\vec{i}+(-xy^2z^2)\vec{j}+(xy^2z)\vec{k}FΓG=(x2yz2βx2y2)i+(βxy2z2)jβ+(xy2z)k
ββ (FΓG)=ββx(x2yz2βx2y2)+ββy(βxy2z2)+ββz(xy2z)\nablaβ (FΓG)={\frac \partial {\partial x}}(x^2yz^2-x^2y^2)+{\frac \partial {\partial y}}(-xy^2z^2)+{\frac \partial {\partial z}}(xy^2z)ββ (FΓG)=βxββ(x2yz2βx2y2)+βyββ(βxy2z2)+βzββ(xy2z)
ββ (FΓG)=2xyz2β2xy2β2xyz2+xy2=βxy2\nablaβ (FΓG)=2xyz^2-2xy^2-2xyz^2+xy^2=-xy^2ββ (FΓG)=2xyz2β2xy2β2xyz2+xy2=βxy2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments