Question #106526

Show the complete solution on the following questions.


1. Evaluate βˆ‡β‹…(FΓ—G),\nabla \cdot (F \times G), given 𝐹(π‘₯,𝑦,𝑧)=𝑦𝑧𝑖⃗+π‘₯𝑧𝑗⃗+π‘₯π‘¦π‘˜βƒ—πΉ(π‘₯,𝑦,𝑧) = 𝑦𝑧 \vec{𝑖} + π‘₯𝑧\vec{ 𝑗} + π‘₯𝑦\vec{ π‘˜} and 𝐺(π‘₯,𝑦,𝑧)=π‘₯𝑦𝑗⃗+π‘₯π‘¦π‘§π‘˜βƒ—πΊ(π‘₯,𝑦,𝑧) = π‘₯𝑦 \vec{𝑗} + π‘₯𝑦𝑧\vec{ π‘˜}


1
Expert's answer
2020-03-30T10:25:05-0400

FΓ—G=(FyGzβˆ’FzGy)iβƒ—+(FzGxβˆ’FxGz)jβƒ—+(FxGyβˆ’FyGx)kβƒ—FΓ—G=(F_yG_z-F_zG_y)\vec{i}+(F_zG_x-F_xG_z)\vec{j}+(F_xG_y-F_yG_x)\vec{k}

FΓ—G=(x2yz2βˆ’x2y2)iβƒ—+(βˆ’xy2z2)jβƒ—+(xy2z)kβƒ—FΓ—G=(x^2yz^2-x^2y^2)\vec{i}+(-xy^2z^2)\vec{j}+(xy^2z)\vec{k}

βˆ‡β‹…(FΓ—G)=βˆ‚βˆ‚x(x2yz2βˆ’x2y2)+βˆ‚βˆ‚y(βˆ’xy2z2)+βˆ‚βˆ‚z(xy2z)\nablaβ‹…(FΓ—G)={\frac \partial {\partial x}}(x^2yz^2-x^2y^2)+{\frac \partial {\partial y}}(-xy^2z^2)+{\frac \partial {\partial z}}(xy^2z)

βˆ‡β‹…(FΓ—G)=2xyz2βˆ’2xy2βˆ’2xyz2+xy2=βˆ’xy2\nablaβ‹…(FΓ—G)=2xyz^2-2xy^2-2xyz^2+xy^2=-xy^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS