lim(x;y)→(0;0)4x2y4x4+y2=[y=x2]==limx→04x2x24x4+x4=45≠0=f(0,0)\lim\limits_{(x;y)\to (0;0)}\frac{4x^2y}{4x^4+y^2}=[y=x^2]=\\=\lim\limits_{x\to 0}\frac{4x^2x^2}{4x^4+x^4}=\frac{4}{5}\ne0=f(0,0)(x;y)→(0;0)lim4x4+y24x2y=[y=x2]==x→0lim4x4+x44x2x2=54=0=f(0,0)
Therefore the function f(x,y)f(x,y)f(x,y) is not continuous at ( 0,0).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment