The closed interval method
To find the absolute maximum and minimum values of a continuous function "f" on a closed interval "[a,b]":
1. Find the values of "f" at the critical numbers of "f" in "(a,b)."
2. Find the values of "f" at the endpoints of the interval.
3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
"f(x)=6(x^2-1)^3, [-1, 2]"
1. Find the first derivative with respect to "x"
Find the critical number(s)
"x_1=-1,x_2=0,x_3=1"
"f(-1)=6((-1)^2-1)^3=0"
"f(0)=6((0)^2-1)^3=-6"
"f(1)=6((1)^2-1)^3=0"
2.
"f(-1)=6((-1)^2-1)^3=0"
"f(2)=6((2)^2-1)^3=162"
3. Absolute maxima
Absolute minima
Comments
Leave a comment