ANSWER a) 1 8 ( 4 x 2 + 12 x + 5 ) 1 2 ( 8 x 2 + 10 x − 11 ) + 7 2 ln ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ + C \frac { 1 }{ 8 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 1 }{ 2 } }\left( 8{ x }^{ 2 }+10x-11 \right) +\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| } +C 8 1 ( 4 x 2 + 12 x + 5 ) 2 1 ( 8 x 2 + 10 x − 11 ) + 2 7 ln ∣ ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ ∣ + C
b)ln ∣ x + 1 ∣ + 1 2 arctan x 2 + C \ln { \left| x+1 \right| } +\frac { 1 }{ 2 } \arctan { \frac { x }{ 2 } +C } ln ∣ x + 1 ∣ + 2 1 arctan 2 x + C
EXPLANATION
a)When calculating the integral we use the formulas ∫ d u 2 u = u + C , ∫ d t t 2 − a 2 = ln ∣ t + t 2 − a 2 ∣ + C \int { \frac { du }{ 2\sqrt { u } } =\sqrt { u } } +C,\quad \int { \frac { dt }{ \sqrt { { t }^{ 2 }-{ a }^{ 2 } } } } =\ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } +C ∫ 2 u d u = u + C , ∫ t 2 − a 2 d t = ln ∣ ∣ t + t 2 − a 2 ∣ ∣ + C . Denote u = t 2 − a 2 d v = d t u=\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dv=dt u = t 2 − a 2 d v = d t integrating by parts, we calculate the integral ∫ t 2 − a 2 d t = t t 2 − a 2 − ∫ t 2 t 2 − a 2 d t = t t 2 − a 2 − ∫ t 2 − a 2 + a 2 t 2 − a 2 d t = \int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad =t } \sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \frac { { t }^{ 2 } }{ \sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } =t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \frac { { t }^{ 2 }\ { -a }^{ 2 }+{ \ a }^{ 2 } }{ \sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } = ∫ t 2 − a 2 d t = t t 2 − a 2 − ∫ t 2 − a 2 t 2 d t = t t 2 − a 2 − ∫ t 2 − a 2 t 2 − a 2 + a 2 d t = = t t 2 − a 2 − ∫ t 2 − a 2 d t − a 2 ln ∣ t + t 2 − a 2 ∣ =t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\ - } { \ a }^{ 2 }\ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } = t t 2 − a 2 − ∫ t 2 − a 2 d t − a 2 ln ∣ ∣ t + t 2 − a 2 ∣ ∣ . Add the integral ∫ t 2 − a 2 d t \int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad \quad } ∫ t 2 − a 2 d t to both sides of the equality, we obtain ∫ t 2 − a 2 d t = t t 2 − a 2 2 − a 2 2 ln ∣ t + t 2 − a 2 ∣ + C \int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad =\frac { t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } }{ 2 } } -\frac { { \quad a }^{ 2 } }{ 2 } \ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } +C ∫ t 2 − a 2 d t = 2 t t 2 − a 2 − 2 a 2 ln ∣ ∣ t + t 2 − a 2 ∣ ∣ + C .
∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x = 3 8 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 d x − \int { (3x+1)\sqrt { 4{ x }^{ 2 }+12x+5 } dx=\frac { 3 }{ 8 } \int { (8x+12)\sqrt { 4{ x }^{ 2 }+12x+5 } dx } }- ∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x = 8 3 ∫ ( 8 x + 12 ) 4 x 2 + 12 x + 5 d x − − 7 2 ∫ 4 x 2 + 12 x + 5 d x = -\frac { 7 }{ 2 } \int { \ \sqrt { 4{ x }^{ 2 }+12x+5 } dx }= − 2 7 ∫ 4 x 2 + 12 x + 5 d x = = 3 8 ∫ 4 x 2 + 12 x + 5 d ( 4 x 2 + 12 x + 5 ) − 7 4 ∫ ( 2 x + 3 ) 2 − 4 d ( 2 x + 3 ) = =\frac { 3 }{ 8 } \int { \sqrt { 4{ x }^{ 2 }+12x+5 } d(4{ x }^{ 2 }+12x+5) } -\frac { 7 }{ 4 } \int { \sqrt { { (2x+3) }^{ 2 }-4 } d(2x+3) } = = 8 3 ∫ 4 x 2 + 12 x + 5 d ( 4 x 2 + 12 x + 5 ) − 4 7 ∫ ( 2 x + 3 ) 2 − 4 d ( 2 x + 3 ) =
= 1 4 ( 4 x 2 + 12 x + 5 ) 3 2 − 7 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 2 2 8 + + 7 2 ln ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ + C = =\quad \frac { 1 }{ 4 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 3 }{ 2 } }-\frac { 7(2x+3)\sqrt { { (2x+3) }^{ 2 }{ -2 }^{ 2 } } }{ 8 } ++\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| } +C= = 4 1 ( 4 x 2 + 12 x + 5 ) 2 3 − 8 7 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 2 2 + + 2 7 ln ∣ ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ ∣ + C =
= 1 8 ( 4 x 2 + 12 x + 5 ) 1 2 ( 8 x 2 + 10 x − 11 ) + 7 2 ln ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ + + C . =\frac { 1 }{ 8 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 1 }{ 2 } }\left( 8{ x }^{ 2 }+10x-11 \right) +\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| }+ +C. = 8 1 ( 4 x 2 + 12 x + 5 ) 2 1 ( 8 x 2 + 10 x − 11 ) + 2 7 ln ∣ ∣ ( 2 x + 3 ) + ( 2 x + 3 ) 2 − 4 ∣ ∣ + + C .
EXPLANATION b)
Using fractional decomposition x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) = ( x 2 + 4 ) + ( x + 1 ) ( x 2 + 4 ) ( x + 1 ) \frac { { x }^{ 2 }+x+5 }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } =\frac { { (x }^{ 2 }+4)+(x+1) }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 = ( x 2 + 4 ) ( x + 1 ) ( x 2 + 4 ) + ( x + 1 ) = ( x 2 + 4 ) ( x 2 + 4 ) ( x + 1 ) + ( x + 1 ) ( x 2 + 4 ) ( x + 1 ) = =\frac { { (x }^{ 2 }+4)\quad }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } +\frac { (x+1) }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) } = = ( x 2 + 4 ) ( x + 1 ) ( x 2 + 4 ) + ( x 2 + 4 ) ( x + 1 ) ( x + 1 ) = = 1 x + 1 + 1 x 2 + 4. =\frac { 1 }{ x+1 } +\frac { 1 }{ { x }^{ 2 }+4. } = x + 1 1 + x 2 + 4. 1
∫ x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) d x = ∫ 1 x + 1 d x + ∫ 1 x 2 + 4. d x \int { \frac { { x }^{ 2 }+x+5 }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } dx=\int { \frac { 1 }{ x+1 } dx } } +\int { \frac { 1 }{ { x }^{ 2 }+4. } dx } ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 d x = ∫ x + 1 1 d x + ∫ x 2 + 4. 1 d x = ln ∣ x + 1 ∣ + 1 2 arctan x 2 + C =\ln { \left| x+1 \right| } +\frac { 1 }{ 2 } \arctan { \frac { x }{ 2 } +C } = ln ∣ x + 1 ∣ + 2 1 arctan 2 x + C
Comments