Question #107657
a) integrate (3x+1) √4x^2+12x+5. dx
b) integrate x^2+x+5/(x^2+4)(x+1) dx
1
Expert's answer
2020-05-21T12:32:05-0400

ANSWER a) 18(4x2+12x+5)12(8x2+10x11)+72ln(2x+3)+(2x+3)24+C\frac { 1 }{ 8 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 1 }{ 2 } }\left( 8{ x }^{ 2 }+10x-11 \right) +\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| } +C

b)lnx+1+12arctanx2+C\ln { \left| x+1 \right| } +\frac { 1 }{ 2 } \arctan { \frac { x }{ 2 } +C }

EXPLANATION

a)When calculating the integral we use the formulas du2u=u+C,dtt2a2=lnt+t2a2+C\int { \frac { du }{ 2\sqrt { u } } =\sqrt { u } } +C,\quad \int { \frac { dt }{ \sqrt { { t }^{ 2 }-{ a }^{ 2 } } } } =\ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } +C . Denote u=t2a2dv=dtu=\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dv=dt integrating by parts, we calculate the integral t2a2dt=tt2a2t2t2a2dt=tt2a2t2 a2+ a2t2a2dt=\int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad =t } \sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \frac { { t }^{ 2 } }{ \sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } =t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \frac { { t }^{ 2 }\ { -a }^{ 2 }+{ \ a }^{ 2 } }{ \sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } = =tt2a2t2a2dt  a2lnt+t2a2=t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\ - } { \ a }^{ 2 }\ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } . Add the integral t2a2dt\int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad \quad }to both sides of the equality, we obtain t2a2dt=tt2a22a22lnt+t2a2+C\int { \sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\quad =\frac { t\sqrt { { t }^{ 2 }{ -a }^{ 2 } } }{ 2 } } -\frac { { \quad a }^{ 2 } }{ 2 } \ln { \left| t+\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \right| } +C .

(3x+1)4x2+12x+5dx=38(8x+12)4x2+12x+5dx\int { (3x+1)\sqrt { 4{ x }^{ 2 }+12x+5 } dx=\frac { 3 }{ 8 } \int { (8x+12)\sqrt { 4{ x }^{ 2 }+12x+5 } dx } }- 72 4x2+12x+5dx=-\frac { 7 }{ 2 } \int { \ \sqrt { 4{ x }^{ 2 }+12x+5 } dx }= =384x2+12x+5d(4x2+12x+5)74(2x+3)24d(2x+3)==\frac { 3 }{ 8 } \int { \sqrt { 4{ x }^{ 2 }+12x+5 } d(4{ x }^{ 2 }+12x+5) } -\frac { 7 }{ 4 } \int { \sqrt { { (2x+3) }^{ 2 }-4 } d(2x+3) } =

=14(4x2+12x+5)327(2x+3)(2x+3)2228++72ln(2x+3)+(2x+3)24+C==\quad \frac { 1 }{ 4 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 3 }{ 2 } }-\frac { 7(2x+3)\sqrt { { (2x+3) }^{ 2 }{ -2 }^{ 2 } } }{ 8 } ++\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| } +C=

=18(4x2+12x+5)12(8x2+10x11)+72ln(2x+3)+(2x+3)24++C.=\frac { 1 }{ 8 } { \left( 4{ x }^{ 2 }+12x+5 \right) }^{ \frac { 1 }{ 2 } }\left( 8{ x }^{ 2 }+10x-11 \right) +\frac { 7 }{ 2 } \ln { \left| (2x+3)+\sqrt { { (2x+3) }^{ 2 }-4 } \right| }+ +C.

EXPLANATION b)

Using fractional decomposition x2+x+5(x2+4)(x+1)=(x2+4)+(x+1)(x2+4)(x+1)\frac { { x }^{ 2 }+x+5 }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } =\frac { { (x }^{ 2 }+4)+(x+1) }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } =(x2+4)(x2+4)(x+1)+(x+1)(x2+4)(x+1)==\frac { { (x }^{ 2 }+4)\quad }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } +\frac { (x+1) }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) } = =1x+1+1x2+4.=\frac { 1 }{ x+1 } +\frac { 1 }{ { x }^{ 2 }+4. }

x2+x+5(x2+4)(x+1)dx=1x+1dx+1x2+4.dx\int { \frac { { x }^{ 2 }+x+5 }{ \left( { x }^{ 2 }+4 \right) \left( x+1 \right) \quad } dx=\int { \frac { 1 }{ x+1 } dx } } +\int { \frac { 1 }{ { x }^{ 2 }+4. } dx } =lnx+1+12arctanx2+C=\ln { \left| x+1 \right| } +\frac { 1 }{ 2 } \arctan { \frac { x }{ 2 } +C }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS