ANSWER a) "\\frac { 1 }{ 8 } { \\left( 4{ x }^{ 2 }+12x+5 \\right) }^{ \\frac { 1 }{ 2 } }\\left( 8{ x }^{ 2 }+10x-11 \\right) +\\frac { 7 }{ 2 } \\ln { \\left| (2x+3)+\\sqrt { { (2x+3) }^{ 2 }-4 } \\right| } +C"
b)"\\ln { \\left| x+1 \\right| } +\\frac { 1 }{ 2 } \\arctan { \\frac { x }{ 2 } +C }"
EXPLANATION
a)When calculating the integral we use the formulas "\\int { \\frac { du }{ 2\\sqrt { u } } =\\sqrt { u } } +C,\\quad \\int { \\frac { dt }{ \\sqrt { { t }^{ 2 }-{ a }^{ 2 } } } } =\\ln { \\left| t+\\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \\right| } +C" . Denote "u=\\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dv=dt" integrating by parts, we calculate the integral "\\int { \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\\quad =t } \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\\int { \\frac { { t }^{ 2 } }{ \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } =t\\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\\int { \\frac { { t }^{ 2 }\\ { -a }^{ 2 }+{ \\ a }^{ 2 } }{ \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } } dt } =" "=t\\sqrt { { t }^{ 2 }{ -a }^{ 2 } } -\\int { \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\\ - } { \\ a }^{ 2 }\\ln { \\left| t+\\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \\right| }" . Add the integral "\\int { \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\\quad \\quad }"to both sides of the equality, we obtain "\\int { \\sqrt { { t }^{ 2 }{ -a }^{ 2 } } dt\\quad =\\frac { t\\sqrt { { t }^{ 2 }{ -a }^{ 2 } } }{ 2 } } -\\frac { { \\quad a }^{ 2 } }{ 2 } \\ln { \\left| t+\\sqrt { { t }^{ 2 }-{ a }^{ 2 } } \\right| } +C" .
"\\int { (3x+1)\\sqrt { 4{ x }^{ 2 }+12x+5 } dx=\\frac { 3 }{ 8 } \\int { (8x+12)\\sqrt { 4{ x }^{ 2 }+12x+5 } dx } }-" "-\\frac { 7 }{ 2 } \\int { \\ \\sqrt { 4{ x }^{ 2 }+12x+5 } dx }=" "=\\frac { 3 }{ 8 } \\int { \\sqrt { 4{ x }^{ 2 }+12x+5 } d(4{ x }^{ 2 }+12x+5) } -\\frac { 7 }{ 4 } \\int { \\sqrt { { (2x+3) }^{ 2 }-4 } d(2x+3) } ="
"=\\quad \\frac { 1 }{ 4 } { \\left( 4{ x }^{ 2 }+12x+5 \\right) }^{ \\frac { 3 }{ 2 } }-\\frac { 7(2x+3)\\sqrt { { (2x+3) }^{ 2 }{ -2 }^{ 2 } } }{ 8 } ++\\frac { 7 }{ 2 } \\ln { \\left| (2x+3)+\\sqrt { { (2x+3) }^{ 2 }-4 } \\right| } +C="
"=\\frac { 1 }{ 8 } { \\left( 4{ x }^{ 2 }+12x+5 \\right) }^{ \\frac { 1 }{ 2 } }\\left( 8{ x }^{ 2 }+10x-11 \\right) +\\frac { 7 }{ 2 } \\ln { \\left| (2x+3)+\\sqrt { { (2x+3) }^{ 2 }-4 } \\right| }+ +C."
EXPLANATION b)
Using fractional decomposition "\\frac { { x }^{ 2 }+x+5 }{ \\left( { x }^{ 2 }+4 \\right) \\left( x+1 \\right) \\quad } =\\frac { { (x }^{ 2 }+4)+(x+1) }{ \\left( { x }^{ 2 }+4 \\right) \\left( x+1 \\right) \\quad }" "=\\frac { { (x }^{ 2 }+4)\\quad }{ \\left( { x }^{ 2 }+4 \\right) \\left( x+1 \\right) \\quad } +\\frac { (x+1) }{ \\left( { x }^{ 2 }+4 \\right) \\left( x+1 \\right) } =" "=\\frac { 1 }{ x+1 } +\\frac { 1 }{ { x }^{ 2 }+4. }"
"\\int { \\frac { { x }^{ 2 }+x+5 }{ \\left( { x }^{ 2 }+4 \\right) \\left( x+1 \\right) \\quad } dx=\\int { \\frac { 1 }{ x+1 } dx } } +\\int { \\frac { 1 }{ { x }^{ 2 }+4. } dx }" "=\\ln { \\left| x+1 \\right| } +\\frac { 1 }{ 2 } \\arctan { \\frac { x }{ 2 } +C }"
Comments
Leave a comment