ANSWER: 1)"{ f }_{ max }=674" at the points "(-2,\\sqrt { 221 } )" and "(-2,-\\sqrt { 221 } )"
2) "{ f }_{ min }=-7" at the point "(1,0)"
EXPLANATION
Since the function "f(x,y)=2{ x }^{ 2 }+3{ y }^{ 2 }-4x-5" is continuous on the domain "C=\\left\\{ (x,y):x^{ 2 }+y^{ 2 }\\le 225 \\right\\}" (compact set) the function takes the largest and smallest values. If "{ \\ f }_{ max }\\ (or\\ { \\ f }_{ min })=f(a,b)\\ and\\ (a,b)\\in \\left\\{ (x,y):x^{ 2 }+y^{ 2 }<225 \\right\\} ,\\\\ then\\quad \\nabla f(a,b\\ )=0"
It is necessary to compare the value of the functional such points with the values of the function at the boundary points of the region "C" .
Step 1)
"\\nabla f(x,y\\ )=\\left( { f }_{ x }^{ ' },f_{ y }^{ ' } \\right) =0\\quad \\Leftrightarrow \\begin{cases} 4x-4=0 \\\\ 6y=0 \\end{cases}\\quad \\Leftrightarrow \\quad \\quad \\begin{cases} x=1 \\\\ y=0 \\end{cases}\\quad .""(1,0)\\in \\ \\left\\{ (x,y):{ x }^{ 2 }+{ y }^{ 2 }<225 \\right\\} ,\\ f(1,0)=2\\cdot 1-4\\cdot 1-5=-7"
Step 2)
At the boundary of the region "C" function "f" has the form "f(x,\\ \\pm \\sqrt { 225-{ x }^{ 2 } } )=450+(225-{ x }^{ 2 })-4x-5=" "=-{ x }^{ 2 }-4x+670,\\quad x\\in [-15,15]." "{ \\left( -{ x }^{ 2 }-4x+670 \\right) }_{ x }^{ ' }=-2x-4.=0,\\quad if\\quad x=-2.\\quad"Therefore, we compare the
values of the function "\u03c6(x)=-{ x }^{ 2 }-4x+670" at the points "x=-15,\\ x=-2,\\ x=15" . Or for function "f" at the points "(-15,0)\\ ,\\ (-2,\\pm \\sqrt { 225-4 } )=(-2,\\pm \\sqrt { 221 } \\ ),\\ (15,0)\\quad"
Step 3)
Compare the value of the function "f" at the points "(1,0)\\ , (-15,0)\\ , (-2,-\\sqrt { 221 } )\\ ,(-2,\\sqrt { 221 } )\\ , (15,0)\\quad"
"f(1,0)=-7,f(-15,0)=f(15,0)=385,\\quad f(-2,\\sqrt { 221 } ) ="
"=f(-2,-\\ \\sqrt { 221 } \\ )=674\\quad"
So, "{ f }_{ max }=674" at the points "(-2,\\sqrt { 221 } )\\quad and\\quad (-2,-\\sqrt { 221 } )" ."{ f }_{ min }=-7\\quad"at the point "(1,0)"
Comments
Leave a comment