Question #107932
Find the maximum and minimum values of the function f(x,y)=2x2+3y2−4x−5 on the domain x2+y2≤225.

1)What is the maximum value of f(x,y) ?

2) List the point(s) where the function attains its maximum as an ordered pair, such as (-6,3), or a list of ordered pairs if there is more than one point, such as (1,3), (-4,7).

3) What is the minimum value of f(x,y)?

4) List points where the function attains its minimum as an ordered pair, such as (-6,3), or a list of ordered pairs if there is more than one point, such as (1,3), (-4,7).
1
Expert's answer
2020-04-08T11:44:08-0400

ANSWER: 1)fmax=674{ f }_{ max }=674 at the points (2,221)(-2,\sqrt { 221 } ) and (2,221)(-2,-\sqrt { 221 } )

2) fmin=7{ f }_{ min }=-7 at the point (1,0)(1,0)

EXPLANATION

Since the function f(x,y)=2x2+3y24x5f(x,y)=2{ x }^{ 2 }+3{ y }^{ 2 }-4x-5 is continuous on the domain C={(x,y):x2+y2225}C=\left\{ (x,y):x^{ 2 }+y^{ 2 }\le 225 \right\} (compact set) the function takes the largest and smallest values. If  fmax (or  fmin)=f(a,b) and (a,b){(x,y):x2+y2<225},thenf(a,b )=0{ \ f }_{ max }\ (or\ { \ f }_{ min })=f(a,b)\ and\ (a,b)\in \left\{ (x,y):x^{ 2 }+y^{ 2 }<225 \right\} ,\\ then\quad \nabla f(a,b\ )=0

It is necessary to compare the value of the functional such points with the values of the function at the boundary points of the region CC .

Step 1)

f(x,y )=(fx,fy)=0{4x4=06y=0{x=1y=0.\nabla f(x,y\ )=\left( { f }_{ x }^{ ' },f_{ y }^{ ' } \right) =0\quad \Leftrightarrow \begin{cases} 4x-4=0 \\ 6y=0 \end{cases}\quad \Leftrightarrow \quad \quad \begin{cases} x=1 \\ y=0 \end{cases}\quad .

(1,0) {(x,y):x2+y2<225}, f(1,0)=21415=7(1,0)\in \ \left\{ (x,y):{ x }^{ 2 }+{ y }^{ 2 }<225 \right\} ,\ f(1,0)=2\cdot 1-4\cdot 1-5=-7

Step 2)

At the boundary of the region CC function ff has the form f(x, ±225x2)=450+(225x2)4x5=f(x,\ \pm \sqrt { 225-{ x }^{ 2 } } )=450+(225-{ x }^{ 2 })-4x-5= =x24x+670,x[15,15].=-{ x }^{ 2 }-4x+670,\quad x\in [-15,15]. (x24x+670)x=2x4.=0,ifx=2.{ \left( -{ x }^{ 2 }-4x+670 \right) }_{ x }^{ ' }=-2x-4.=0,\quad if\quad x=-2.\quadTherefore, we compare the

values of the function φ(x)=x24x+670φ(x)=-{ x }^{ 2 }-4x+670 at the points x=15, x=2, x=15x=-15,\ x=-2,\ x=15 . Or for function ff at the points (15,0) , (2,±2254)=(2,±221 ), (15,0)(-15,0)\ ,\ (-2,\pm \sqrt { 225-4 } )=(-2,\pm \sqrt { 221 } \ ),\ (15,0)\quad

Step 3)

Compare the value of the function ff at the points (1,0) ,(15,0) ,(2,221) ,(2,221) ,(15,0)(1,0)\ , (-15,0)\ , (-2,-\sqrt { 221 } )\ ,(-2,\sqrt { 221 } )\ , (15,0)\quad

f(1,0)=7,f(15,0)=f(15,0)=385,f(2,221)=f(1,0)=-7,f(-15,0)=f(15,0)=385,\quad f(-2,\sqrt { 221 } ) =

=f(2, 221 )=674=f(-2,-\ \sqrt { 221 } \ )=674\quad

So, fmax=674{ f }_{ max }=674 at the points (2,221)and(2,221)(-2,\sqrt { 221 } )\quad and\quad (-2,-\sqrt { 221 } ) .fmin=7{ f }_{ min }=-7\quadat the point (1,0)(1,0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS