Use Lagrange multipliers to find the maximum and minimum values of f(x,y)=x−2y subject to the constraint x2+y2=5, if such values exist.
maximum = ?
minimum = ?
1
Expert's answer
2020-04-19T10:03:33-0400
f(x,y)=x−2yg(x,y)=x2+y2=5Use Lagrange multipliers,⟨fx,fy⟩=λ⟨gx,gy⟩⟨1,−2⟩=λ⟨2x,2y⟩Compare both sides2x1=2y−2⇒2y=−4x⇒y=−2xSubstitute this in x2+y2=5x2+(−2x)2=5⇒5x2=5⇒x=±1⇒x=±1Substitute this in y=−2xWhen x=1,y=−2(1)=−2When x=−1,y=−2(−1)=2f(1,−2)=1−2(−2)=5←maximumf(−1,2)=−1−2(2)=−5←minimum
Comments
Leave a comment