"\\begin{aligned}\n & f(x,y)=x-2y \\\\ \n & g(x,y)={{x}^{2}}+{{y}^{2}}=5 \\\\ \n & \\text{Use Lagrange multipliers,} \\\\ \n & \\left\\langle {{f}_{x}},{{f}_{y}} \\right\\rangle =\\lambda \\left\\langle {{g}_{x}},{{g}_{y}} \\right\\rangle \\\\ \n & \\left\\langle 1,-2 \\right\\rangle =\\lambda \\left\\langle 2x,2y \\right\\rangle \\\\ \n & \\text{Compare both sides} \\\\ \n & \\frac{1}{2x}=\\frac{-2}{2y}\\Rightarrow 2y=-4x\\Rightarrow y=-2x \\\\ \n & \\text{Substitute this in }{{x}^{2}}+{{y}^{2}}=5 \\\\ \n & {{x}^{2}}+{{\\left( -2x \\right)}^{2}}=5\\Rightarrow 5{{x}^{2}}=5\\Rightarrow x=\\pm \\sqrt{1}\\Rightarrow x=\\pm 1 \\\\ \n & \\text{Substitute this in }y=-2x \\\\ \n & \\text{When }x=1,y=-2\\left( 1 \\right)=-2 \\\\ \n & \\text{When }x=-1,y=-2\\left( -1 \\right)=2 \\\\ \n & f(1,-2)=1-2(-2)={\\color{red}{5}}\\leftarrow maximum~ \\\\ \n & f(-1,2)=-1-2(2)={\\color{red}{-5}}\\leftarrow minimum~ \\\\ \n\\end{aligned}"
Comments
Leave a comment