"f'_x=4x-4,f_y'=6y" then the stationary point is "(1,0)."
"f''_{x^2}=4,f''_{xy}=0,f''_{y^2}=6" then "(1,0)" is point of the minimum. "f(1,0)=-7"
Examine the "f(x,y)" at the boundaries of the region
"L(x,y,\\lambda)=2x^2+3y^2-4x-5+\\lambda(x^2+y^2-324)"
"\\lambda'_x=4x-4-2\\lambda x,\\lambda'_y=6y+2\\lambda y" if "\\lambda'_x=\\lambda'_y=0" and "x^2+y^2=324" then
"\\lambda=-3,x=-2,y=8\\sqrt5,y=-8\\sqrt5"
"\\lambda''_{x^2}=4+2\\lambda,\\lambda''_{xy}=0,\\lambda''_{y^2}=6+2\\lambda" hence "d^2\\lambda<0" hence "(-2,8\\sqrt5),(-2,-8\\sqrt5)" is points of the conditional maximum. Then "f(-2,8\\sqrt5)=f(-2,-8\\sqrt5)=971"
Comments
Leave a comment