Question #107920
Find the maximum and minimum values of the function f(x,y)=2x2+3y2−4x−5 on the domain x2+y2≤324.

The maximum value of f(x,y). and List the point(s) where the function attains its maximum as an ordered pair, such as (-6,3), or a list of ordered pairs if there is more than one point, such as (1,3), (-4,7).
1
Expert's answer
2020-04-08T16:39:22-0400

fx=4x4,fy=6yf'_x=4x-4,f_y'=6y then the stationary point is (1,0).(1,0).

fx2=4,fxy=0,fy2=6f''_{x^2}=4,f''_{xy}=0,f''_{y^2}=6 then (1,0)(1,0) is point of the minimum. f(1,0)=7f(1,0)=-7

Examine the f(x,y)f(x,y) at the boundaries of the region

L(x,y,λ)=2x2+3y24x5+λ(x2+y2324)L(x,y,\lambda)=2x^2+3y^2-4x-5+\lambda(x^2+y^2-324)

λx=4x42λx,λy=6y+2λy\lambda'_x=4x-4-2\lambda x,\lambda'_y=6y+2\lambda y if λx=λy=0\lambda'_x=\lambda'_y=0 and x2+y2=324x^2+y^2=324 then

λ=3,x=2,y=85,y=85\lambda=-3,x=-2,y=8\sqrt5,y=-8\sqrt5

λx2=4+2λ,λxy=0,λy2=6+2λ\lambda''_{x^2}=4+2\lambda,\lambda''_{xy}=0,\lambda''_{y^2}=6+2\lambda hence d2λ<0d^2\lambda<0 hence (2,85),(2,85)(-2,8\sqrt5),(-2,-8\sqrt5) is points of the conditional maximum. Then f(2,85)=f(2,85)=971f(-2,8\sqrt5)=f(-2,-8\sqrt5)=971


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS