As we know, for all points that are on the graph function "y=e^{8x}" are performed
"\\boxed{\\forall (a,b) : b=e^{8a}}"
Then we reformulate our problem: find the minimum of the function "f(a,b)=ab" with the condition "e^{8a}=b" . We introduce the Lagrange function and study it for extremum
"L(a,b;\\lambda)=ab+\\lambda\\cdot\\left(b-e^{8a}\\right)\\longrightarrow\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{\\partial L}{\\partial a}=b-8\\lambda e^{8a}=0\\\\[0.4cm]\n\\displaystyle\\frac{\\partial L}{\\partial b}=a+\\lambda=0\\\\[0.4cm]\n\\displaystyle\\frac{\\partial L}{\\partial\\lambda}=b-e^{8a}=0\n\\end{array}\\right.\\longrightarrow\\\\[0.4cm]\nb=8\\lambda e^{8a}\\longrightarrow e^{8a}=\\frac{b}{8\\lambda}\\longrightarrow\\\\[0.4cm]\nb-\\frac{b}{8\\lambda}=0\\longrightarrow b\\cdot\\left(\\frac{8\\lambda-1}{8\\lambda}\\right)=0\\longrightarrow\\\\[0.4cm]\n8\\lambda-1=0\\longrightarrow\\boxed{\\lambda=\\frac{1}{8}}\\longrightarrow\\\\[0.4cm]\n\\left\\{\\begin{array}{l}\na=-\\lambda=-\\displaystyle\\frac{1}{8}\\\\[0.4cm]\nb=8\\lambda e^{8a}=8\\cdot\\displaystyle\\frac{1}{8}\\cdot e^{8\\cdot\\left(-\\frac{1}{8}\\right)}=e^{-1}\n\\end{array}\\right.\\longrightarrow\\\\[0.4cm]"Conclusion,
"\\min\\limits_{(a,b)\\in\\mathbb{R}^2}f(a,b)=f\\left(-\\frac{1}{8},e^{-1}\\right)=-\\frac{1}{8}\\cdot e^{-1}\\\\[0.3cm]\n\\boxed{\\min\\limits_{(a,b)\\in\\mathbb{R}^2}f(a,b)=-\\frac{1}{8e}\\approx -0.4598}"
To check, let's look at the graph of the investigated function
ANSWER
"\\min\\limits_{(a,b)\\in\\mathbb{R}^2}f(a,b)=-\\frac{1}{8e}\\approx -0.4598"
Comments
Leave a comment