As we know, for all points that are on the graph function y = e 8 x y=e^{8x} y = e 8 x are performed
∀ ( a , b ) : b = e 8 a \boxed{\forall (a,b) : b=e^{8a}} ∀ ( a , b ) : b = e 8 a
Then we reformulate our problem: find the minimum of the function f ( a , b ) = a b f(a,b)=ab f ( a , b ) = ab with the condition e 8 a = b e^{8a}=b e 8 a = b . We introduce the Lagrange function and study it for extremum
L ( a , b ; λ ) = a b + λ ⋅ ( b − e 8 a ) ⟶ { ∂ L ∂ a = b − 8 λ e 8 a = 0 ∂ L ∂ b = a + λ = 0 ∂ L ∂ λ = b − e 8 a = 0 ⟶ b = 8 λ e 8 a ⟶ e 8 a = b 8 λ ⟶ b − b 8 λ = 0 ⟶ b ⋅ ( 8 λ − 1 8 λ ) = 0 ⟶ 8 λ − 1 = 0 ⟶ λ = 1 8 ⟶ { a = − λ = − 1 8 b = 8 λ e 8 a = 8 ⋅ 1 8 ⋅ e 8 ⋅ ( − 1 8 ) = e − 1 ⟶ L(a,b;\lambda)=ab+\lambda\cdot\left(b-e^{8a}\right)\longrightarrow\\[0.3cm]
\left\{\begin{array}{l}
\displaystyle\frac{\partial L}{\partial a}=b-8\lambda e^{8a}=0\\[0.4cm]
\displaystyle\frac{\partial L}{\partial b}=a+\lambda=0\\[0.4cm]
\displaystyle\frac{\partial L}{\partial\lambda}=b-e^{8a}=0
\end{array}\right.\longrightarrow\\[0.4cm]
b=8\lambda e^{8a}\longrightarrow e^{8a}=\frac{b}{8\lambda}\longrightarrow\\[0.4cm]
b-\frac{b}{8\lambda}=0\longrightarrow b\cdot\left(\frac{8\lambda-1}{8\lambda}\right)=0\longrightarrow\\[0.4cm]
8\lambda-1=0\longrightarrow\boxed{\lambda=\frac{1}{8}}\longrightarrow\\[0.4cm]
\left\{\begin{array}{l}
a=-\lambda=-\displaystyle\frac{1}{8}\\[0.4cm]
b=8\lambda e^{8a}=8\cdot\displaystyle\frac{1}{8}\cdot e^{8\cdot\left(-\frac{1}{8}\right)}=e^{-1}
\end{array}\right.\longrightarrow\\[0.4cm] L ( a , b ; λ ) = ab + λ ⋅ ( b − e 8 a ) ⟶ ⎩ ⎨ ⎧ ∂ a ∂ L = b − 8 λ e 8 a = 0 ∂ b ∂ L = a + λ = 0 ∂ λ ∂ L = b − e 8 a = 0 ⟶ b = 8 λ e 8 a ⟶ e 8 a = 8 λ b ⟶ b − 8 λ b = 0 ⟶ b ⋅ ( 8 λ 8 λ − 1 ) = 0 ⟶ 8 λ − 1 = 0 ⟶ λ = 8 1 ⟶ ⎩ ⎨ ⎧ a = − λ = − 8 1 b = 8 λ e 8 a = 8 ⋅ 8 1 ⋅ e 8 ⋅ ( − 8 1 ) = e − 1 ⟶ Conclusion,
min ( a , b ) ∈ R 2 f ( a , b ) = f ( − 1 8 , e − 1 ) = − 1 8 ⋅ e − 1 min ( a , b ) ∈ R 2 f ( a , b ) = − 1 8 e ≈ − 0.4598 \min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=f\left(-\frac{1}{8},e^{-1}\right)=-\frac{1}{8}\cdot e^{-1}\\[0.3cm]
\boxed{\min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=-\frac{1}{8e}\approx -0.4598} ( a , b ) ∈ R 2 min f ( a , b ) = f ( − 8 1 , e − 1 ) = − 8 1 ⋅ e − 1 ( a , b ) ∈ R 2 min f ( a , b ) = − 8 e 1 ≈ − 0.4598
To check, let's look at the graph of the investigated function
ANSWER
min ( a , b ) ∈ R 2 f ( a , b ) = − 1 8 e ≈ − 0.4598 \min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=-\frac{1}{8e}\approx -0.4598 ( a , b ) ∈ R 2 min f ( a , b ) = − 8 e 1 ≈ − 0.4598
Comments