Question #107933
Use Lagrange multipliers to find the point (a,b) on the graph of y=e8x, where the value ab is as small as possible.

P=?
1
Expert's answer
2020-04-08T16:34:41-0400

As we know, for all points that are on the graph function y=e8xy=e^{8x} are performed



(a,b):b=e8a\boxed{\forall (a,b) : b=e^{8a}}



Then we reformulate our problem: find the minimum of the function f(a,b)=abf(a,b)=ab with the condition e8a=be^{8a}=b . We introduce the Lagrange function and study it for extremum



L(a,b;λ)=ab+λ(be8a){La=b8λe8a=0Lb=a+λ=0Lλ=be8a=0b=8λe8ae8a=b8λbb8λ=0b(8λ18λ)=08λ1=0λ=18{a=λ=18b=8λe8a=818e8(18)=e1L(a,b;\lambda)=ab+\lambda\cdot\left(b-e^{8a}\right)\longrightarrow\\[0.3cm] \left\{\begin{array}{l} \displaystyle\frac{\partial L}{\partial a}=b-8\lambda e^{8a}=0\\[0.4cm] \displaystyle\frac{\partial L}{\partial b}=a+\lambda=0\\[0.4cm] \displaystyle\frac{\partial L}{\partial\lambda}=b-e^{8a}=0 \end{array}\right.\longrightarrow\\[0.4cm] b=8\lambda e^{8a}\longrightarrow e^{8a}=\frac{b}{8\lambda}\longrightarrow\\[0.4cm] b-\frac{b}{8\lambda}=0\longrightarrow b\cdot\left(\frac{8\lambda-1}{8\lambda}\right)=0\longrightarrow\\[0.4cm] 8\lambda-1=0\longrightarrow\boxed{\lambda=\frac{1}{8}}\longrightarrow\\[0.4cm] \left\{\begin{array}{l} a=-\lambda=-\displaystyle\frac{1}{8}\\[0.4cm] b=8\lambda e^{8a}=8\cdot\displaystyle\frac{1}{8}\cdot e^{8\cdot\left(-\frac{1}{8}\right)}=e^{-1} \end{array}\right.\longrightarrow\\[0.4cm]

Conclusion,



min(a,b)R2f(a,b)=f(18,e1)=18e1min(a,b)R2f(a,b)=18e0.4598\min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=f\left(-\frac{1}{8},e^{-1}\right)=-\frac{1}{8}\cdot e^{-1}\\[0.3cm] \boxed{\min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=-\frac{1}{8e}\approx -0.4598}

To check, let's look at the graph of the investigated function





ANSWER



min(a,b)R2f(a,b)=18e0.4598\min\limits_{(a,b)\in\mathbb{R}^2}f(a,b)=-\frac{1}{8e}\approx -0.4598


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS